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Preface

This volume contains the final proceedings for the 2004 Computer Music Model-
ing and Retrieval Symposium (CMMR 2004). This event was held during 26-29
May 2004 in Esbjerg, Denmark on the joint campus area of Aalborg University
Esbjerg and the University of Southern Denmark, Esbjerg. CMMR is an annual
event focusing on important aspects of computer music. CMMR, 2004 is the sec-
ond event in this series. CMMR 2003, which was held in Montpellier, France in
May 2003, was a great success and attracted high-quality papers and prominent
researchers from the field of computer music. The CMMR 2003 postsymposium
proceedings was published by Springer in the Lecture Notes in Computer Science
series (LNCS 2771). CMMR 2004 was jointly organized by Aalborg University
Esbjerg in Denmark and LMA, CNRS, Marseille in France (in cooperation with
ACM SIGWEB).

The use of computers in music is well established. CMMR, 2004 provided a
unique opportunity to meet and interact with peers concerned with the cross-
influence of the technological and creative in computer music. The field of com-
puter music is interdisciplinary by nature and closely related to a number of com-
puter science and engineering areas such as information retrieval, programming,
human computer interaction, digital libraries, hypermedia, artificial intelligence,
acoustics, signal processing, etc. The event gathered many interesting people
(researchers, educators, composers, performers, and others). There were many
high-quality keynote and paper presentations, that fostered inspiring discussions.
I hope that you find the work presented in these proceedings as interesting and
exciting as I have.

First of all, I would like to thank the Program Chair Richard Kronland-
Martinet for the very fruitful cooperation during the organization of this second
event in the CMMR series. I would also like to thank my colleagues Laura
Hyland, Stefania Serafin, and Lars Graugaard for their help in organizing the
event. Finally, this volume would not have been possible without the help of
Springer, Heidelberg. In particular, I would like to thank the computer science
editor, Christine Giinther, and the executive editor of the LNCS series, Alfred
Hofmann.

October 2004 Uffe Kock Wiil
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Separating Voices in Polyphonic Music:
A Contig Mapping Approach

Elaine Chew and Xiaodan Wu

University of Southern California,

Viterbi School of Engineering, Integrated Media Systems Center,
Epstein Department of Industrial and Systems Engineering,
3715 McClintock Avenue GER240 MC:0193,

Los Angeles, California, USA
{echew, xiaodanw}@usc.edu

Abstract. Voice separation is a critical component of music informa-
tion retrieval, music analysis and automated transcription systems. We
present a contig mapping approach to voice separation based on per-
ceptual principles. The algorithm runs in O(n?) time, uses only pitch
height and event boundaries, and requires no user-defined parameters.
The method segments a piece into contigs according to voice count, then
reconnects fragments in adjacent contigs using a shortest distance strat-
egy. The order of connection is by distance from maximal voice contigs,
where the voice ordering is known. This contig-mapping algorithm has
been implemented in VoSA, a Java-based voice separation analyzer soft-
ware. The algorithm performed well when applied to J. S. Bach’s Two-
and Three-Part Inventions and the forty-eight Fugues from the Well-
Tempered Clavier. We report an overall average fragment consistency of
99.75%, correct fragment connection rate of 94.50% and average voice
consistency of 88.98%, metrics which we propose to measure voice sepa-
ration performance.

1 Introduction

This paper presents an algorithm that separates voices in polyphonic music
using basic principles of music perception and proposes metrics for evaluating
the correctness of the machine-generated solutions. Creating music with multiple
voices that are relatively independent is a compositional technique that results
in auditory pleasure and has been practised for centuries in western music. This
has led to a library of compositional rules that facilitate auditory streaming and
the perception of multiple voices dating as far back as Palestrina (1526-1594)
and as recently as Huron (2001, see [7]). In this paper, we use knowledge of the
perceptual principles of auditory streaming to create an O(n?) contig mapping
algorithm for separating polyphonic pieces into their component voices.
Distinct from audio source separation, voice separation is the determining of
perceptible parts or voices from multiple concurrently sounding streams of mu-
sic. The multiple streams can originate from the same source and also be of the

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 1-20, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Elaine Chew and Xiaodan Wu

same timbre. The contig mapping approach described in this paper considers only
pitch height and event boundaries, ignoring information on timbre and sound
source. Prior researchers (such as [8], [11] and [2]) have not reported any signif-
icant testing on large corpora because of the lack of methods for quantitative
evaluation of voice separation results. We propose three metrics for quantifying
the goodness of voice separation results and test the contig mapping algorithm
on Johann Sebastian Bach’s 15 Two-Part Inventions, 15 Three-Part Inventions
and 48 Fugues from the Well-Tempered Clavier.

Computationally viable and robust methods for voice separation are critical
to machine processing of music. Separating music into its component voices is
necessary for notating music in separate staffs according to voice or instrument,
or in the same staff with stems up or down depending on voice [8]. Another ap-
plication related to music transcription is pitch spelling, the assignment of letter
names to numeric representations for pitches or pitch classes (see for example,
[3], [4] and [10]). The spelling of any given pitch is based on its tonal context
as well as accepted voice leading principles. Voice separation is a precursor to
incorporating voice leading spelling rules to any pitch spelling method.

Many applications in music information retrieval require the matching of
monophonic queries to polyphonic! (or homophonic) databases, for example,
query by humming applications. While other approaches to matching single line
queries to multi-line records exist (see for example [9]), one approach made pos-
sible by voice separation is to first separate each piece into its component voices
prior to matching the melodic query to now single-line records. Hence, a robust
voice separation algorithm will vastly improve the hit rate of matching melodic
queries to polyphonic databases. Another computational problem relevant to
music information retrieval is the automatic detection and categorization of mu-
sic by meter. Metric structure is most obvious in the lower voices and methods
for meter induction can be improved by voice separation techniques.

The final example of a voice separation application is that of expressive per-
formance. One of the main tasks of the performer or conductor is to determine
the main melody or motif in any musical segment. The notes in the segment to
be highlighted is often played louder or even a little before the others that are no-
tated simultaneously in the score [6]. At other times, different voices are sounded
at different volume levels to produce a foreground and background effect. Hence,
machine models for voice separation are also essential to knowledge-based ap-
proaches to generating expressive performances.

As shown above, voice separation is a valuable tool in music information
retrieval, automated transcription and computer analysis of music. One of the

! In traditional music literature, there exists a clear distinction between polyphony
and homophony. Polyphonic music is multi-voice music where the voices exhibit
independence relative to one another. Homophonic music, although also consisting of
multiple voices, has one primary lead voice while other voices act as accompaniment
to the main melody. In contrast, heterophonic music (less well defined) is music with
one primary melody, and all accompanying voices embelishing with variants of the
main theme.
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easiest approaches to voice separation is to split voices according to some set
of non-overlapping pitch ranges. According to [8], this is the method adopted
by most commercial sequencer software packages. Needless to say, this method
of separating voices can produce highly inaccurate and unsightly (in the case
of automatic transcription) results. Various researchers have proposed ways to
improve on this primitive approach.

In [11], Temperley proposed a preference rule approach to voice separation,
incorporating the following rules for assigning voices to piano-roll representation
of music: 1. avoid large leaps in any one stream; 2. minimize the number of
streams; 3. minimize long breaks in streams; 4. avoid having more than one
stream occupy a single square; and, 5. maintain a single top voice. Rules 1
through 4 were tested on four of Bach’s fugues. Rule 5 was found to be necessary
for handling classical music; rules 1 through 5 were tested on a few classical string
quartets. The errors were analyzed in terms of the number of breaks, missed
or incorrect collisions and misleads. Another rule-based approach was briefly
described by Cambouropoulos in [2]. This method segments the input into beats
then, within each beat, connects all onsets into streams by selecting the shortest
path. The crossing of streams is disallowed and the number of streams is set to
be equal to the number of notes in the largest chord.

In [8], Kilian and Hoos proposed a local optimization approach to voice sep-
aration. The piece was first partitioned into slices which can contain parts that
overlap (in time) with other slices. Within each slice, the notes are then sep-
arated into voices by minimizing a cost function, which assigns penalty values
for undesirable features such as, overlapping notes and large pitch intervals.
One flexible feature of the Kilian and Hoos model is the ability to assign entire
chords to one single voice. (The cost function penalizes chord tones that are
spread too far apart.) The penalty values can be adjusted by the user to achieve
different tradeoffs between the features. Their algorithm was tested on selected
Bach Chorales and Chopin Valses, and Bartok’s Mikrokosmos, and was found
to be sensitive to the choice of penalty function parameters. For the purpose
of automated transcription, the user can change the parameter values until a
satisfactory result is achieved.

Like Temperley, our goal is to produce a correct analysis rather than an ap-
propriate one for transcription, as is the case for Kilian and Hoos. In this paper,
we propose three metrics to measure the correctness of a voice separation solu-
tion. They are: the average fragment consistency, the correct fragment connec-
tion rate and the average voice consistency. These metrics allow the algorithm’s
results to be quantified objectively. Unlike Kilian and Hoos’ local optimization
approach, our method does not allow synchronous notes to be part of the same
voice. On the other hand, the contig mapping approach exhibits high fragment
consistency, the grouping of notes from the same voice into the same fragments.

Both Temperley’s preference rule approach as well as Kilian and Hoos’ lo-
cal optimization approach can protentially incur prohibitive computational costs
if all possible solutions were enumerated and evaluated. Temperley utilized dy-
namic programming while Kilian and Hoos used a heuristically-guided stochastic
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local search procedure to avoid the exponential computational cost of exhaustive
enumeration. In contrast, the contig mapping approach has an O(n?) perfor-
mance and does not require approximation methods to compute a solution.

Distinct from previous approaches, our method hinges on one important fea-
ture of polyphonic music that has been ignored by other researchers. Because
voices tend not to cross, when all voices are present, one can be certain of the
voice ordering and assignment. We use these maximal voice segments as pillars
of certainty out of which each voice connects to other members of its stream.
This method requires no pre-assigned parameters or rule definitions. The per-
ceptual rules are incorporated into the mathematical model and the algorithm
has a guaranteed worst case performance of O(n?).

Section 2 describes the perceptual principles and the concepts underlying
the contig mapping approach, and introduces the contig mapping algorithm.
Section 3 presents additional details of the computer implementation of the al-
gorithm and describes the VoSA (Voice Separation Analyzer) software. Section 4
presents our evaluation techniques and computational results. Finally, Section 5
outlines our conclusions and future work.

2 The Contig Mapping Approach

This section presents the contig mapping approach and its underlying percep-
tual principles. Section 2.1 outlines the auditory perceptual principles relevant
to our approach, and Section 2.2 extracts from the principles and rules the as-
sumptions underlying the contig mapping algorithm. Section 2.3 describes the
contig mapping algorithm, including the segmentation procedure and the frag-
ment connection policy.

2.1 Perceptual Principles for Voice Leading

In this section, we highlight the perceptual principles that are relevant to the
contig mapping approach. Because the goal of the rules of voice leading is to
create two or more concurrent yet distinct parts or voices, the same rules result
in optimal auditory streaming. In [7], Huron reviews the perceptual principles
for the organizing of auditory stimuli into streams and derives the rules of voice
leading from these principles and empirical evidence.

The first is the pitch proximity principle. In the review, Huron reports that
Bregman and his colleagues have gathered strong evidence for the pre-eminence
of pitch proximity over trajectory in stream organization [1]. He argues that
“the coherence of an auditory stream is maintained by close pitch proximity in
successive tones within the stream,” and that this principle holds true in the
music across different cultures. Thus, in determining the connections between
notes that are perceived to be from the same stream, proximity should be the
guiding principle.

The second is the stream crossing principle. Humans have great difficulty
in tracking streams of sounds that cross with respect to pitch. Huron reports
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the results of Deutsch [5] who showed that concurrent ascending and descending
streams of the same timbre are perceived to switch directions at the point of
crossing? as shown in the diagram on the right in Figure 1. Hence, a guiding
principle in connecting notes in the same stream is that the streams should not
Cross.

Fig. 1. Possible interpretations of crossing streams.

These perceptual principles lead to numerous traditional and non-traditional
rules for writing polyphonic music with perceptibly distinct parts. The ones rel-
evant related to the pitch proximity principle are (following Huron’s numbering
system):

[D6.] Avoid Unisons Rule. Avoid shared pitches between voices.

D10. Common Tone Rule. Pitch-classes common to successive sonorities are best
retained as a single pitch that remains in the same voice.

D11. Conjunct Movement Rule. If a voice cannot retain the same pitch, it should
preferably move by step.

C3. Avoid Leaps Rule. Avoid wide pitch leaps.

D13. Nearest Chordal Tone Rule. Parts should connect to the nearest chordal
tone in the next sonority.

[D18.] Oblique Approach to Fused Intervals Rule. When approaching unisons,
octaves, or fifths, it is best to retain the same pitch in one of the voices.

[D19.] Avoid Disjunct Approach to Fused Intervals Rule. If it is not possible to

approach unisons, octaves and fifths by retaining the same pitch, step motion
should be used.

while D6, D14 and D15 are encapsulated in the stream crossing principle:

[D6.] Avoid Unisons Rule. Avoid shared pitches between voices.
D14. Part-Crossing Rule. Awoid the crossing of parts with respect to pitch.

2 A simple and informal experiment conducted on March 4th in a class of 14 students
showed that this result held true even when the ascending and descending streams
were played using the rhythm of the Christmas carol “Joy to the World,” where the
opening melody is essentially a descending scale embellished with temporal variation.
This perceptual principle is so strong that it overrode the perception of the well-
known melody.
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D15. Pitch Overlapping Rule. Avoid “overlapped” parts in which a pitch in an
ostensibly lower voice is higher than the subsequent pitch in an ostensibly higher
voice.

2.2 The Assumptions and Underlying Concept

For the purpose of the contig mapping algorithm, we translate the rules and
perceptual principles detailed in Section 2.1 to the following assumptions:

1. By definition, each voice can only sound at most one note at any given
time.

2. All the voices will sound synchronously at some time (we use this as a base-
line count of the total number of voices present in the piece.)

3. Pitch Proximity: intervals are minimized between successive notes in the
same stream or voice.

4. Stream Crossing: voices tend not to cross.

The contig mapping approach derives its method directly from these assump-
tions. Assumptions 1, 2 and 4 imply that, at certain segments of time, all voices
will sound synchronously in a well-bahaved manner. In these segments, which
we call mazimal voice contigs, we can be certain of the voice assignments for
each note. Based on assumptions 3 and 4, we can use distance minimizing pro-
cedures to connect voices between segments. The maximal voice contigs seed the
connection process: they act as the pillars out of which voice assignments grow
at each iteration of our procedure.

maximal maximal
voice voice
contig contig
T/ N Y 0 e
INGESS = C S % ........ \/\@

Fig. 2. Minimum distance voice connections grow out from the maximal voice
contigs

L}

/I

2.3 The Algorithm

We have outlined the principles and concept behind our contig mapping approach
in the previous sections. In this section, we shall provide the algorithmic details
for its systematic implementation, including the procedures for segmentation
and connection.

Before embarking on a description of the algorithm, we first introduce the
terminology used in this section. A note is a musical entity with pitch and
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duration properties. A fragment is a sequence of successive notes that belong to
the same voice. A contig® is a collection of overlapping fragments such that the
overlap depth (number of fragments present) at any time is constant. A mazimal
voice contig is a contig with the maximum number of voices present. Examples
of a fragment, contig and maximal voice contig are shown in Figure 4, which
corresponds to bars 24 and 25 of Bach’s Three-Part Invention (Sinfonia) No. 13
(shown in Figure 3.) In this case, both the first and last contigs are maximal
voice contigs.

rEsrrese=
A-j_;;
- ——
GRS —

6}: = IG I - I

7 F (3 [ ——

)

s ™y ™ ™y ™y

®@©®
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0008

| AN

fragment contig

=1
%_

Fig. 4. Terminology

Segmentation Procedure The piece is segmented according to voice count.
The segmentation procedure is best illustrated by example. The final outcome is
a segmentation of the original piece into contigs such that the voice count remains
constant within the contig. We return to the Bach Three-Part Invention example
shown in Figure 3. Figure 5(a) shows a piano roll representation of the same

3 The term contig is borrowed from the field of computational biology where, in DNA
sequencing, the shotgun sequencing method utilizes computer algorithms to connect
ordered sets of overlapping clones of DNA fragments in order to determine the DNA
sequence.
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excerpt. The lower half of Figure 5(b) charts the voice count at any given time
while the upper half of the figure shows the flattened piano roll representation
and the segmentation boundaries, marked as “a”, “b” and “c.” Boundaries a

and c result from the change in voice counts, while boundary b is the results of
the voice status change.

Pitch
A

D6 D6 |
C6 [ cs

B5

A5 [A5]

G5 Gh

F5

B4

ﬂ

Time
(a) piano roll representation
va yb ye
C6 [G5 =3 F6
E5 [As]|B5][ce[Ds6 C6 D6
c4 C5 B4 |A4|A5]|G5|F5 |E5|D5
!
M M A Time
Woice
Count

)| 7 | ’

-
(b) flattened piano roll representation with segmentation, and voice count plot

Fig. 5. Example: Bach’s Three-Part Invention No.13, measures 24 and 25.

More formally, if v; represents the voice count at time slice ¢, the boundary
between time slices ¢ — 1 and ¢ becomes a segmentation boundary if:

— either vy # vy_1;
— or vy = v;_1 but the voice status changes.
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A voice status change is caused by held notes that cross over a segmentation
boundary, and thus are suspended over an empty slot as shown in the segment
(b,c) in Figure 5(b). The held note resulted in a status change across boundary
b even though the voice count does not change. As a result, b becomes a seg-
mentation boundary. Because the note E6 crosses the boundary c, this note will
be cloned, marked as being a part of a longer note and duplicated in the contigs
on either side of boundary c. The resulting segmentation is shown in the contig
diagram in Figure 4.

Connection Policy After segmentation, the maximal voice contigs seed the
connection process. They act as the centers out of which the connections to
neighboring contigs grow. Because voices tend not to cross and maximal voice
contigs contain all voices, the voice assignment for each note in a maximal voice
contig is known with high certainty. Hence, all fragments in each maximal voice
contig are ordered by pitch height and assigned voice numbers corresponding
to their ordering. In connecting voice fragments across neighboring contigs, we
select the distance minimizing choice. Connected fragments are assigned to the
same voice, and the fragment assembly process grows out from the maximal
voice contigs.

Because the number of voices is usually small*, we can enumerate all possible
connection combinations and select the one with the lowest penalty. Suppose we
wish to connect the fragments in two neighboring contigs, X and Y, where X is
followed by Y (in time). Consider a note, gx, that is the last one from a fragment
in contig X and another, py, that is a first note in a fragment in contig Y. The
cost of connecting gx to py, ¢(¢x,py), is assigned based on the following rules:

— if the two notes are segments of the same longer note, c(qx,py) = —23%;
— if one of the two notes is null or both, c(gx,py) = 23
— else, ¢(gx, py) is the absolute difference between the pitches of the two notes.

The first rule ensures that all long notes that were previously partitioned are
re-connected at this stage. The second rule forces all connectible fragments to
be assigned a partner whenever one exists. And the third rule ensures minimal
distance assignments.

The connection sequence grows outward from the maximal voice contigs,
which act as seeds for the connection procedure. First, fragments in the imme-
diate neighbors are connected to those in each maximal voice contig (this first
level connection is illustrated in Figure 2.) Then, the second order neighbors are
connected to the immediate neighbors, and so on. The assembling procedure can
be viewed as a crystallization process. The maximal voice contigs act as seeds

* According to Huron’s Principle of Limited Density [7], “If a composer intends to
write music in which independent parts are easily distinguished, then the number
of concurrent voices or parts ought to be kept to three or fewer.” Typically, the
number of voices range from two to four, and occasionally, five or six voices are
utilized. However, in the latter cases, the human ear cannot distinguish more than
three or four concurrent voices at any given time.
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for the process, and the contigs closer to these seeds will be connected first. The
procedure ends when all contigs (or fragments in every contig) are connected.

In a piece with n notes, there can be at most n contigs. At each iteration, at
least one (and at most n) neighboring contig(s) is connected to a growing section
centered around a maximal voice contig. There are at most n such iterations,
hence the worst case complexity is O(n?).

The shortest distance connection policy produces correct groupings in the
vast majority of cases. However, it is useful to note that sometimes the policy
may not generate the correct solution. See, for example, the connection solutions
presented in Figure 6. In the figure, dotted lines link fragments that are grouped
into the same voice. The correct solution is shown in Figure 6(a) while the
shortest distance solution is given in Figure 6(b). The algorithm assigns the
lower fragment in the second contig to the incorrect voice. These erroneous
connections are visually presented in Figure 8(b) as the four “X”’s on the left
hand side. Because of the robustness of the maximal contig approach, this one
incorrect assignment will not affect the majority of the notes, which are correctly
grouped together according to voice.

olleeee!

(a) correct connections

@ ,,,,,,,,,,,,,, | S
) i (o) o)

. S J S
(b) shortest distance connections

Fig. 6. Connection solutions for Bach’s Three-Part Invention No.13, measures
24 and 25.

3 Implementation

The contig mapping approach to voice separation has been implemented in a
Java application called VoSA, the Voice Separation Analyzer. The platform-
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independent application was developed under Java jdk1.4.2 and runs on Win-
dows, Mac OS and Unix machines. Its graphical user interface allows the user to
visualize and evaluate the results of the voice separation algorithm. The current
version of VoSA takes only MIDI input. It also has the capacity to export voice
separated pieces in MIDI format and evaluation results in comma separated
value (CSV) format. In this section, we present the implementation strategies
not covered in the previous section’s explanation of the algorithm, and describe
VoSA’s graphical user interface.

3.1 Quantization

Because performance artifacts and rounding errors produce overlapping notes
from the same voice or gaps between successive notes, we use a selective snapping
procedure to quantize the data. Since we are not concerned with beat onset
irregularities, quantization only needs to occur at the boundaries with ambiguous
note overlaps or gaps between note boundaries. Unlike the usual quantizing
procedure of snapping the observed note boundaries to the closest unit grid, the
selective snapping will only be invoked when the time difference between any two
note boundaries is less than a given threshold (we used 30ms). Figure 7 shows
the selective snapping quantization procedure. After quantization, the notes of
the piece are stored as an ordered list sorted by onset times.

< 30ms < 30ms
Pitzh Pitch

Fitch Fitch

Fig. 7. The selective snapping quantization procedure.

3.2 Treatment of Ending Chordal Emblishments

In the library of contrapuntal pieces we tested, many of the polyphonic compo-
sitions have endings that are embellished with chords consisting of more notes
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than the number of voices in the pieces. These ending chords serve as statements
of finality but also masquerade as maximal voice contigs, causing VoSA to over-
estimate the number of voices in the piece and also to grow the one maximal
voice contig from right to left, a highly suboptimal process. To facilitate the
search for the “true” maximal voice contigs, we exclude the last three contigs to
compute the maximum number of voices, and eliminate all voice fragments with
an index greater than the maximum voice count. These discarded fragments (a
small fraction of the total notes in the piece) will not be counted during the
evaluation process.

3.3 User Interface

VoSA provides a graphical user interface for the user to analyze the performance
of the voice separation algorithm. This graphical user interface is shown in Fig-
ure 8. The upper part of the Figure 8(a) shows the piano roll representation
and the segmentation of Bach’s Three-Part Invention No.13. In the lower part
of Figure 8, a graph charts the voice count at each point in time. The vertical
lines in the piano roll graph shows the segmentation boundaries indexed by the
contig numbers.

The latest version of VoSA, VoSA 3, incorporates zoom-in and zoom-out
capabilities, colors voice assignments by voice, and marks the erroneous connec-
tions by a red “X.” Figure 8(b) shows a screenshot of a zoomed-in analysis of
the results of voice separation for Bach’s Three-Part Invention No.13. The red
X’s mark the points at which connections were incorrectly assigned.

4 Computational Results

This section presents the contig mapping algorithm’s voice separation results
when applied to polyphonic music by J. S. Bach, namely his Two- and Three-Part
Inventions and Fugues from the Well-Tempered Clavier. Section 4.1 describes
the test corpus and the acquisition of voice separation solutions. Section 4.2 lays
out the evaluation procedures and Section 4.3 presents the evaluation statistics
for our test corpus.

4.1 Test Data and Ground Truth

We test the contig mapping algorithm using Johann Sebastian Bach’s (1685-
1750) 48 Fugues from his Well-Tempered Clavier (BWV 846-893), his Two-Part
Inventions (BWV 772-786) and his Three-Part Inventions (BWV 787-801), also
known as Sinfonias. As noted by Temperley in [11], “the correct ‘contrapuntal
analysis’ for a piece is often not entirely clear. ... One case where the correct
contrapuntal analysis is explicit is Bach fugues (and similar pieces by other
composers). In that case, the separate voices of the piece are usually clearly
indicated by being confined to particular staffs and notated with either upward
or downward stems.”
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a) main screen showing segmentation and voice count

(b) the error locator screen showing voice assignments and erroneous connections (X)

Fig. 8. Screenshots of VoSA, the Voice Separation Analyzer
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To facilitate evaluation of the voice separation procedure, we first need the
ground truth, the correct assignment. An advantage of using Bach’s fugues and
his two- and three-part inventions is that many MIDI renditions of these pieces
exist that have been sequenced such that each voice is in a separate track. For
comparison against our results, we use such track separated MIDI files. The
fugues were obtained from the MuseData repository, www.musedata.org, and the
two- and three-part inventions from The Midi Archive at archive.cs.uu.nl/pub/
MIDI. We used the scores from Virtual Sheet Music, www.virtualsheetmusic.com,
for checking the voice assignments manually.

4.2 Evaluation Method

We use three main statistics to quantify the performance of the algorithm,
namely, the average fragment consistency, the correct fragment connection rate
and the average voice consistency. The evaluation process in VoSA records all
the errors in the results and shows them visually as demonstrated in Figure 8(b).
The GUI in VoSA allows the user to compare the voice assignments to the ground
truth.

The average fragment consistency measures the overall percentage consis-
tency over all fragments. A fragment is considered consistent if all notes in the
fragment belong to the same voice. The percentage consistency of a fragment is
the highest proportion of notes assigned to the same voice. This number shows
the accuracy of the segmentation and fragment generation procedure. Formally,
if V' is the set of all voice indices, F' the set of all fragments and v N (note) the
true voice assignment for note, then the percentage consistency of fragment f is
defined as:

FC(f) ma&({H note in f : vN(note) = v||},

ve

100
11

where || f|| represents the cardinality of f, the number of notes in fragment f.
The average fragment consistency is given by:

1
AFC = 7] > FC(f). (1)

fer

The correct fragment connection rate measures the proportion of connections
that are correctly assigned. The correctness of each connection is evaluated by
comparing it to the ground truth obtained a track-separated MIDI file as de-
scribed in Section 4.1. To describe the mathematical formula for this quantity, we
first define C' to be the set of all pairs of connected fragments, {(f,g): f,g € F
and f is connected to g} and vF'(f) to be the true voice assignment for fragment
f. In the case of 100% fragment consistency, vF'(f) is the true voice assignment
of all notes in fragment f. When a fragment has less than 100% consistency,
vF(f) is the voice to which the majority of the notes in f belong. More formally,
vF(f) = argmaxyey {|| note in f : vN(note) = v||}. The correct fragment con-
nection rate is then given by the equation:
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CFC = [ IH(1.9) € C :uF () = vF (). 2)

Finally, the average voice consistency measures how well the notes in the piece
have been properly assigned to their appropriate voices. This quantity measures,
on average, the proportion of notes from the same voice that have been assigned
by the algorithm to the same voice. Again, we begin with two definitions: let
vA(note) be the algorithm-assigned voice for note and S(v) be the set of notes
assigned to voice v, {note : vA(note) = v}. The voice consistency is defined as

100
1S ()]

and the average voice consistency is given by:

Z VC(v (3)

vGV

VC(v) = maX{Hnote € S(v) : vN(note) = ul|},

4.3 Results

The contig mapping algorithm was tested on the 15 Two-Part Inventions (BWV
772-786), the 15 Three-Part Inventions (BWV 787-801) and the 48 Fugues from
the Well-Tempered Clavier (BWV 846-893) by Johann Sebastian Bach (1685-
1750). For each test sample, we used a quantization threshold of 30ms to pre-
process the MIDI data before separating the voices using the contig mapping
algorithm. We then evaluated the average fragment consistency (AFC), the cor-
rect fragment connection rate (CFC) and the average voice consistency (AVC)
of the voice separation result. The distributions of these values for each test set
— Two- and Three-Part Inventions and Fugues — are summarized in Figures 9,
10 and 11 respectively. The summary statistics are reported in Table 1.

The overall average fragment consistency (AFC) for the test corpus was
99.75%, that is to say, all notes in the same fragment are almost certain to
be from the same voice. The overall correct fragment connection (CFC) rate was
94.50% indicating that the likelihood of connecting each fragment correctly to
its contiguous strand is high. And, the overall average voice consistency (AVC)
was 88.98%. Recall that this number reflects the proportion of notes in the same
stream that were correctly assigned to the same voice by the algorithm. This
number is lower than the AFC or CFC because each incorrect connection can
result in a severe loss of voice consistency.

In general, higher average fragment sizes are correlated with higher average
voice consistency numbers. This is not surprising considering that the average
fragment consistency is extremely high. We found three possible sources for
error in the contig mapping approach. The connection policy minimizes pitch
distance. Even though this is generally the case, sometimes the shortest distance
connection does not produce the correct result. On rare occasions, voices do
cross, producing connection distances that are not minimal. Unintentional gaps
between notes in the MIDI file that are not properly quantized can also lead to
higher rates of error.
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(c) average voice consistency histogram (average AVC = 99.29%)

Fig. 9. Voice separation results for Bach’s Two-Part Inventions.
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Fig. 10. Voice separation results for Bach’s Three-Part Inventions.
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Fig. 11. Voice separation results for Bach’s 48 Fugues from the Well-Tempered
Clavier.
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Table 1. Summary statistics (average numbers) for voice separation experiments

MIDI input no. of average  no. of average average average
fragments fragment contigs  AFC CFC AVC
per piece  size per piece (%) (%) (%)

Two-Part Inventions  46.67 18.26 32.60 99.46 91.47 99.29

Three-Part Inventions 194.67 4.28 82.33 99.80 92.27 93.35

WTC Fugues 581.81 3.05 226.50 99.83 96.15 84.39

OVERALL 404.45 6.21 161.49 99.75 94.50 88.98

5 Conclusions and Future Work

In this paper, we described a contig mapping approach to voice separation and
three metrics for evaluating its voice separation results. The algorithm has been
implemented in a voice separation analyzer application software called VoSA.
We used VoSA to compute and analyze the voice separation results when the
algorithm is applied to Bach’s Two- and Three-Part Inventions and Fugues.
Our experiments and evaluations are the first of this scope for the testing of a
voice separation algorithm. The overall statistics are promising, showing that
the contig mapping approach presents a computationally viable and highly ac-
curate solution to the voice separation problem. Future work includes the testing
of the algorithm on a larger polyphonic corpus, and extending the method to
homophonic music.
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Abstract. We present a method for melody detection in polyphonic musical
signals based on a model of the human auditory system. First, a set of pitch
candidates is obtained for each frame, based on the output of an ear model and
periodicity detection using correlograms. Trajectories of the most salient
pitches are then constructed. Next, note candidates are obtained by trajectory
segmentation (in terms of frequency and pitch salience variations). Too short,
low-salience and harmonically-related notes are then eliminated. Finally, the
melody is extracted by selecting the most important notes at each time, based
on their pitch salience. We tested our method with excerpts from 12 songs en-
compassing several genres. In the songs where the solo stands out clearly, most
of the melody notes were successfully detected. However, for songs where the
melody is not that salient, the algorithm was not very accurate. Nevertheless,
the followed approach seems promising.

1 Introduction

As a result of recent technological innovations, there has been a tremendous growth
in the Electronic Music Distribution (EMD) industry. Factors like the widespread ac-
cess to the Internet, bandwidth increasing in domestic accesses or the generalized use
of compact audio formats with CD or near CD quality, such as mp3, have given a
great contribution to that boom. Presently, it is expected that the number of digital
music archives, as well as their dimension, grow significantly in the near future, both
in terms of music database size and in number of genres covered.

However, any large music database, or, generically speaking, any multimedia da-
tabase, is only really useful if users can find what they are looking for in an efficient
manner. Today, whether it is the case of a digital music library, the Internet or any
music database, search and retrieval is carried out mostly in a textual manner, based
on categories such as author, title or genre. This approach leads to a certain number of
difficulties, namely in what concerns database search in a transparent and intuitive
way. Therefore, in order to overcome the limitations described, research is being con-
ducted in an emergent and promising field called Music Information Retrieval (MIR).

Query-by-humming (QBH) [1, 4, 6] is a particularly intuitive way of searching for
a musical piece, since melody humming is a very natural habit of humans. Therefore,

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 21-40, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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several technologies have been developed that aim to permit such function. However,
presently, this work is being carried out only in the MIDI domain, which places
important usability questions. In fact, usually we look for recorded songs, which can
be obtained from CDs or are stored in audio formats such as mp3. Additionally, in
our opinion, looking for musical pieces in the MIDI format is an easier problem,
since there the melody is very often available in a separate channel. The main issues
are, then, to extract the notes from the hummed query (a well-known monophonic
pitch! extraction problem,) and to match the query to the melody (an information
retrieval problem). However, when the melody is not explicitly separated, the
problem is not so easy since it must be extracted somehow. Several algorithms have
been proposed to detect the melody in MIDI files, e.g. [21]. Anyway, we still
maintain the opinion that dealing with audio files is a more challenging task since in
MID], all the notes, as well as their timings, are already known, which simplifies the
extraction of melody even when it is not directly available.

Querying “real-world” polyphonic recorded musical pieces requires that some sort
of melody representation be extracted beforehand, which creates many more difficul-
ties. Polyphonic musical signals can be converted to symbolic formats either manu-
ally or automatically. Manual conversion requires, obviously, a tremendous amount
of man-work and specialized skills. On the other hand, analyzing polyphonic musical
waveforms is a rather complex task, since we can have many different types of in-
struments playing at the same time, whose spectra interfere severely with each other.
This fact makes it very complicated to separate the different sound sources.

Source separation is a major concern for polyphonic music analysis and automatic
music transcription systems and has no general solution yet. One way to approach this
problem is to build computer models that emulate human auditory processing. It is
generally agreed that the human brain processes auditory information in a way called
“auditory scene analysis” [3]. As an attempt to replicate human behavior, some work
has been carried out aiming to develop computational auditory scene analysis sys-
tems. The results obtained are not very accurate yet and are only acceptable for sim-
pler or well-constrained problems. Namely, Ellis [5] tries to analyze a sound wave-
form by means of competitive theories, where each of them proposes a combination
of sounds that might have produced the resulting sound. Sound source models are
used as a basis for the proposed method. Bello ef al [2] and Martin [13] have used
computational blackboard systems for simple automatic music transcription. The
blackboard system is composed of a global database, where hypotheses are proposed
and developed, a scheduler that determines how hypotheses are developed, and
knowledge sources, corresponding to experts. Scheirer [15] proposes a model based
on perceptual issues, using dynamic clustering of comodulation data. In contrast to
the other systems referred, this model is designed for analysis of complex music.
Klapuri [10] proposed a method for multi-pitch estimation where the musical signal is
analyzed at separate frequency bands. Namely, 18 logarithmic distributed bands from
50 Hz to 6 kHz are used. Then at each band, a fundamental frequency likelihood vec-
tor is calculated. Finally, the results from each band are combined to yield global
pitch likelihoods. They report results that outperform the average of ten trained musi-

!In this paper, we use the term pitch indistinctly of fundamental frequency, though the former
is a perceptual variable, whereas the latter is a physical one.
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cians. Other models impose constraints in the number of instruments present or the
harmonic interaction between them, as referred in [7].

Melody detection can be seen as a sub-problem of polyphonic pitch detection and
source separation, where the aim is to detect the main melodic line, regardless of the
other sources present. This requires the detection of the dominant notes at each time,
not the whole set of notes present. For instance, when we hear a pop song, we have
vocals, guitar, bass, percussion and so forth. Yet, in spite of all that information, our
brains still can retain the main melodic line.

Only little work has been carried out in the particular problem of melody detection
in “real-world” songs. One interesting approach is the one followed by Goto [7]. The
author uses a probabilistic model for the detection of melody and bass lines. The
sound wave is first band-pass filtered and then a probability density function (pdf) is
computed for each signal component. The pdfs are generated from a weighted-
mixture of tone models of all possible fundamental frequencies. The more dominant a
model is in the PDF, the more likely the fundamental frequency belongs to that
model. The author compared the dominant frequencies detected with hand-labeled
marked notes and reports an average rate of 88.4% for the melodic pitch line.

Song et al [20] use a different approach, based on the fact that there is no single
method that is both accurate and generic. They argue that their method is more prag-
matic when the final goal is QBH: instead of trying to extract the melody, they use a
mid-level melody representation, which consists of a sequence of audio segments
where each segment contains a set of note candidates. Then, they use a variation of
dynamic programming for matching the query with the melody mid-level representa-
tion.

In this paper, we describe a multi-stage method for melody detection, based on a
model of the human auditory system [17]. Since source separation is a complex prob-
lem for which no general and accurate solutions exist yet, we try to evaluate what we
think is a more pragmatic approach, at least for the time being: we extract the melody
based on the assumption that it generally clearly stands out of the background. In
short, the method works as follows. The sound wave is first divided into frames
where stationarity can be assumed. For each frame, we get a set of pitch candidates,
based on the output of an ear model and periodicity detection using correlograms. We
determine pitch candidates by finding relevant peaks in a summary correlogram,
where peak amplitude gives information regarding its salience. Then, we create pitch
trajectories, based on frequency proximity. After trajectory creation, note candidates
are obtained by trajectory segmentation and elimination. Short-duration, low-salience
and harmonically-related notes are then eliminated. Finally, the melody is extracted
by selecting the most important notes at each time, based on their pitch saliences.

We tested our system on excerpts of 12 songs, encompassing several different gen-
res. The obtained notes were then compared with the correct ones, previously hand-
labeled. In the songs where the solo stands out clearly, most of the melody notes were
successfully detected. However, for songs where the melody is not that salient, the
algorithm was not so accurate. Yet, we could say that the obtained results are encour-
aging.

The following sections describe the work carried out in this paper. Section 2 de-
scribes the melody detection method. In Section 3, experimental results are presented
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and evaluated. Finally, in Section 4, conclusions are drawn and possible directions for
future work are pointed out.

2 Melody Detection Method

Our melody detection algorithm is composed of five modules, illustrated in Fig. 1.

The first module, multi-pitch detection (MPD), receives a raw polyphonic musical
signal and returns a set of pitch candidates and their respective saliences. Then, pitch
trajectories are created based on frequency proximity, in the multi-pitch trajectory
construction (MPTC) module.

The resulting trajectories are then segmented, based on frequency and pitch sali-
ence variations, leading to an initial set of candidate notes. Since many of the ob-
tained notes are irrelevant in a melody extraction context, short-duration, low-salience
and harmonically-related notes are eliminated. Finally, the notes comprising the de-
tected melody are extracted by selecting the most salient notes at each time.

For the sake of visualization simplicity, we will illustrate the method with a simple
example: a monophonic saxophone riff.

Raw Musical
Signal Melody Notes

Lamadis R

Melody Detection System

Trajectory N Note N Melody

MPD = MPTC +Segmentation Elimination Extraction | —

Fig. 1. Melody detection system overview

2.1 Multi-pitch Detection

In the first stage of the algorithm, the objective is to capture a set of candidate
pitches, which constitute the basis of possible future notes. The MPD algorithm re-
ceives as input a raw musical signal (monaural, sampling frequency f; = 22050 Hz, 16
bits quantization) and outputs a set of pitch candidates and respective saliences.

Our goal is to obtain pitch candidates at each time instant. Since we cannot define
instantaneous time in a computational model, we have to define some sort of time
granularity. Therefore, we select a small enough time window and perform sound
wave analysis in a frame-based way. We use a 20 ms frame length, which constitutes
a good trade-off between time and frequency resolution: it is small enough for the as-
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sumption of signal stationarity and large enough for accurate detection of pitches
above 100 Hz. The corresponding number of samples per frame is N = 441. In order
to allow for a smooth transition between frames, 50% overlap is employed.

After dividing the musical signal into frames, we perform an auditory model based
analysis of each frame, in order to detect the most salient pitches in each. This analy-
sis comprises four stages, diagrammed in Fig. 2: i) conversion of the sound waveform
into auditory nerve responses for each frequency channel, using a model of the ear,
with particular emphasis on the cochlea (which creates an image called cochleagram);
ii) detection of the main periodicities in each frequency channel using auto-
correlation (which produces an image called correlogram)j; iii) detection of the global
periodicities in the sound waveform by calculation of a summary correlogram; and iv)
detection of the pitch candidates in the frame by looking for the most salient peaks in
the summary correlogram.

Multi-Pitch Detection Module

Raw Musical Pitch
Signal Candidates
Channel Periodicit Salient
Ear Model —» Periodicity —» ety ] Peak
N Summarization X
Detection Detection
v v v
Cochleagram Correlogram Summary

Correlogram

Fig. 2. Multi-pitch detection module

Ear Model. In the first stage of the multi-pitch detection system, a model of the ear is
implemented, which aims to mimic the tasks carried out by the outer, middle and,
particularly, the inner ear in the first stages of auditory processing. In the inner ear,
the cochlea encodes information in the sound wave into a multi-channel
representation of auditory nerve firing patterns. The output of the cochlear model is a
two-dimensional representation of a sound waveform that permits its visualization as
a time-frequency image. In this image, called “cochleagram”, each line contains
information regarding auditory nerve responses for the corresponding cochlear, or
frequency, channel. A good review of the tasks carried out in the cochlea and
auditory nerve can be found in [8; 9].

In the present work, we use the ear model proposed by Richard Lyon [11] and im-
plemented by Malcolm Slaney [17; 18], with some minor adaptations. Below, we give
a short description of Lyon’s model. For a thorough analysis, we refer the reader to
[17].

The model implements three main tasks: filtering, detection and compression.
First, a cascade of second-order filters models sound propagation down the basilar
membrane, which acts as a frequency analyzer. Therefore, each filter corresponds to a
cochlear channel that best responds to a particular frequency range. Furthermore,
front filters are also implemented, which constitute a simple model of the responses
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of the outer and middle ears. In the present implementation, with a sampling fre-
quency of 22050 Hz, 96 cochlear filters are used. Fig. 3 depicts every 5™ filter re-
sponse, using a logarithmic frequency axis. This figure was created using Slaney’s
Auditory Toolbox [18]. As for model parameterization, we use the default parameters
proposed by Slaney, namely a filter Q of 8 and a step factor of 0.25 (which deter-
mines the amount of filter overlap).
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Fig. 3. Frequency response of cochlear filters

After filtering, the movements of the basilar membrane are converted into auditory
nerve responses. Since inner hair cells only respond to movement in one direction, an
array of half-wave rectifiers is employed to detect the output of each second order fil-
ter. This is a simple model of detection that does not account, for instance, for satura-
tion effects.

Finally, four stages of automatic gain control compress the dynamic range of the
input into a limited level that the auditory nerve can deal with. The automatic gain
control is, in fact, a model of ear’s adaptation: the response to a constant stimulus is
first large and then, as the auditory system adapts to the stimulus, the response be-
comes smaller. Regarding parameterization, we use once again the parameters pro-
posed by Slaney [18], namely target values of 0.0032, 0.0016, 0.0008 and 0.0004 and
time constants of 640, 160, 40 and 10 ms for the first, second, third and fourth stages
of automatic gain control, respectively.

Fig. 4 presents a cochleagram for our monophonic saxophone riff example: here,
the harmonics of the sound waveform are clearly visible by the horizontal striations.
Recall that higher channels correspond to lower frequencies. This picture has a lim-
ited time resolution, due to displaying purposes. However, the inner hair cells in the
cochlea are extremely sensitive to the time structure of each component of the sound.
Thus, a view of the cochleagram for a 20 ms’ time slice is presented in Fig. 5b. In this
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figure, the harmonics are not so clear but a more precise image of auditory nerve fir-
ing responses in each channel is obtained.
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Fig. 4. Cochleagram of a 2.5s’ saxophone riff

Channel Periodicity Detection. After computing the auditory nerve firing responses
for each frequency channel, the main periodicities in the sound wave are detected.
Here, this is accomplished by computation of the auto-correlation function (ACF) in
each channel, resulting in a two-dimensional image of the sound signal, where the
horizontal axis represents correlation lag and the vertical axis represents frequency.
This image is called “correlogram” which means, literally, “picture of correlations”
[17]. Each line of the correlogram contains information regarding the salience of the
periodicities found for a given frequency channel. Like the cochleagram, the
correlogram activity is measured by pixel intensity in the image.

The main objective of the correlogram is to summarize the temporal activity at the
output of the cochlea [17]. In fact, many sounds, and particularly musical sounds, are
periodic in time, or at least pseudo-periodic. The correlogram is, then, a powerful tool
for detecting and visualizing the referred periodicities. As a result, all channels will
show peaks at the horizontal positions corresponding to correlation lags that match
the periods of repetition present in the signal.

Slaney [17] argues that the correlogram is biologically plausible. In fact, despite
the separation of sound into broad cochlear channels, the temporal properties of the
original signal are still kept. It is likely that the brain measures periodicities using a
neural delay line, a case that is supported by the cross-correlator structures found in
the brains of owls and cats. Furthermore, the detection of periodicities is also inspired
by the well-known “timing theory” of auditory nerve firing.
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In terms of computer implementation, here, the periodicities in the cochleagram are
obtained by computing the short-time ACF of the neural firing responses in each co-
chlear channel for a particular time window. As was referred previously, the sound
wave must be divided into frames where stationarity can be assumed. This is equiva-
lent to multiplying the signal by a sliding rectangular window. However, in order to
smooth the correlation, a Hamming window is used instead. In order to improve effi-
ciency, the ACF in each window is implemented via the fast Fourier Transform (FFT)
algorithm, which is equivalent to performing circular auto-correlation [19].

It is common to normalize the ACF so that its value at zero lag is equal to one, in
order to reduce is dynamic range. However, this procedure eliminates any indication
of the relative power in different cochlear channels. Therefore, the correlations are
partially normalized by the square root of the power [18]. In this way, its dynamic
range becomes comparable to the one of the cochleagram, keeping the relative pow-
ers between channels [17]. An example of a 20 ms’ correlogram frame for the saxo-
phone riff is presented in Fig. Sb. This picture shows the utility of correlograms for
the analysis of periodic signals: there are clear vertical lines at particular auto-
correlation lags, indicating instants when a large number of cochlear channels fire
with the same period. This in turn is a clear indication of the pitch periods present in
the signal.

Periodicity Summarization. As we referred above, the vertical lines across several
cochlear channels show evidence of pitch. Therefore, a summary correlogram (SC) is
computed by summing the ACFs across all channels at each time lag. This measures
the likelihood that a periodicity corresponding to a particular time lag is present in the
sound waveform.

Generally, the SC looks very noise, with many spurious peaks that make peak de-
tection more difficult. Therefore, peak enhancing should be carried out. Here, we do
not follow Slaney’s approach [17]. Instead, we perform peak enhancing by smoothing
(where we apply a low-pass filter) and squaring (in order to emphasize the peaks).
Since the correlograms in the previous stage are all non-negative, the SC will also be
non-negative and so does not need to be rectified, as would normally be the case.
Moreover, unlike Slaney who normalizes the summary correlogram in each frame
(dividing it by the value at zero lag) [18], we use its exact values, since they are use-
ful for trajectory segmentation, as will be explained in Section 2.3.

An example of a summary correlogram is presented in Fig. 5d, where the deter-
mined pitch candidates are marked, as will be described below.

Salient Peak Detection. The final stage of the multi-pitch detection module consists
of finding a set of pitch candidates based on the most salient peaks in the summary
correlogram. To accomplish this task, we first look for all peaks in the SC, excluding
the one at zero lag, and obtain their respective saliences, i.e., their amplitudes. Then,
we eliminate all peaks that are not salient enough. To accomplish this task, we find
the highest peak salience, maxPeakSal, and determine the minimum allowed peak
salience, minPeakSal, using the minimum salience ratio parameter, minSalRatio.

The detection of the main periodicities for our example is illustrated in Fig. 5d,
where the most salient peaks, i.e., pitch candidates, are marked. The frequencies for
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the pitch candidates are then obtained by inverting the periods corresponding to the
found peaks. Finally, the pitch saliences in all frames are normalized to the [0; 100]
interval, for comparison in the following stages of the melody detection system.
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Fig. 5. Illustration of the four stages of the MPD algorithm

The four stages of the MPD algorithm are illustrated in Fig. 5: panel a) presents a
20 ms frame of the saxophone riff; panels b) and c) depict the corresponding cochlea-
gram and correlogram images, respectively; and panel d) shows the summary corre-
logram, where the candidate pitch periods are marked.

At this point, the motivation for extracting multiple pitches when we are only in-
terested in the melodic line deserves a better explanation. Actually, extracting a single
pitch would be both easier and more intuitive. However, since we are performing
pitch detection in a polyphonic context, it often happens that the pitch corresponding
to the melody is not the most salient one in every frame. In fact, peaks corresponding
to the periodicities of simultaneous notes may compete in the salience curve and be
alternately selected as the maximum. Therefore, selecting several pitch candidates at
this stage allows for the detection of lower-salience melody notes, which might not be
captured if only a single pitch was extracted. In this way, it is possible to keep track
of the global temporal continuity of each peak. We performed some experiments, to
be reported in a future publication, which confirmed our assumption. The issue of
note salience in a mixture of simultaneous notes is then dealt with in the following
stages of the melody detection system.
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The methodology for multi-pitch detection is summarized in Algorithm 1. Parame-
ter definition is presented in Table 1. The parameters for the cochleagram are not pre-
sented, since we used the default values defined by Slaney [18], as referred above.

Algorithm 1. Multi-pitch detection

1. Compute the cochleagram for each time frame
1.1. Apply Lyon’s cochlear model
2. Compute the correlogram for each time frame
2.1. Multiply each line of the cochleagram frame by
a Hamming window
2.2. Determine the ACF function for each channel via
the FFT
2.3. Normalize the ACF
3. Compute the summary correlogram for the each time
frame
3.1. Sum the ACF across all channels
3.2. Enhance peaks: squaring + low-pass filtering
4. Detect salient peaks in the summary correlogram
4.1. Determine minimum allowed peak value (salience)
- maxPeakSal € maximum peak value

- minPeakSal €& maxPeakSal x minSalRatio
4.2. Eliminate pitches with low salience
4.2.1. If peak salience < minPeakSal, eliminate
peak
4.3. Convert pitch periods to frequencies
5. Normalize pitch saliences in all frames to the
[0; 100] interval
6. Return pitch frequencies and saliences for all
frames.

Table 1. MPD parameters

Parameter Name Parameter Value
frame length 20 ms

frame overlap 50%
minSalRatio 0.2

Unlike automatic music transcription systems, this algorithm does not deal with the
well known and complex “octave problem”. In fact, at this stage it is not important to
analyze if a given pitch candidate corresponds to a real note or appears as a ghost
note, whose fundamental frequency is a harmonic of some real note, a few octaves
above. Some of the ghost notes will be eliminated already at this stage based on the
pitch salience threshold, whereas others will be eliminated in the following stages of
the melody detection algorithm.
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2.2 Trajectory Construction

The second stage of the melody detection algorithm aims at creating a set of pitch tra-
jectories, formed by connecting consecutive pitch candidates with similar frequen-
cies. The idea is to find regions of stable pitches, which indicate the presence of mu-
sical notes. The MPTC algorithm receives as input a set of pitch candidates,
characterized by their frequencies and saliences, and outputs a set of pitch trajecto-
ries, which constitute the basis of the final melody notes.

We follow rather closely Serra’s peak continuation algorithm [16], who based
himself in McAulay and Quatieri’s work [12]. However, since we have a limited set
of pitch candidates per frame, our algorithm is much lighter. In fact, Serra looks for
regions of stable sinusoids in the signal’s spectrum, which leads to a trajectory for
each harmonic component found. Therefore, a high number of trajectories have to be
processed, which makes the algorithm much heavier, though the basic idea is the
same. Another difference is that we first quantize frequencies to the closest MIDI
note. We found that peak continuation based on MIDI note numbers allows for a
more robust trajectory build up. One reason for this seems to come from the fact that
the location of peaks oscillates somewhat due to interference from other sources in
the sound mixture. Furthermore, the representation of notes using MIDI numbers
simplifies an eventual representation of the sound waveform in MIDI format (e.g., for
generation of a MIDI file).

This algorithm is based on the definition of a maximum frequency deviation (in
semi-tones in our case) for continuing trajectories. We define a value of one semi-
tone, motivated by the fact that some songs comprise glissando and vibrato regions,
as well as by the frequency oscillations that may result from interference of other
sources. Therefore, in this way, all these phenomena are kept within a common track,
instead of being separated into a number of different trajectories, e.g., one trajectory
for each note that a glissando may traverse. The drawback of allowing a larger fre-
quency deviation is that a single trajectory can contain more than one note. This is the
reason why we perform trajectory segmentation, in the next stage of the melody de-
tection algorithm.

Also, we specify a maximum number of frames where a trajectory can be inactive,
i.e., when no continuation peaks are found. If this number is exceeded, the trajectory
is stopped. Here, we define a maximum of 5 inactive frames.

Finally, any trajectory must be longer than a minimum trajectory length. Therefore,
all finished trajectories that are shorter then this threshold, are eliminated. The mini-
mum trajectory length in our implementation was set to 9 frames.

We present a detailed description of the implemented algorithm in [14].

The result of the MPTC algorithm is illustrated in Fig. 6, for our saxophone riff
example. There, we can see that some of the obtained trajectories comprise glissando
regions. Also, some of the trajectories include more than one note and should, there-
fore, be segmented.
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Fig. 6. Illustration of the MPTC algorithm

2.3 Trajectory Segmentation

As we mentioned previously, the trajectories that result from the MPTC algorithm
may contain more than one note and, therefore, must be segmented. This is the task of
the third stage of the melody detection method. The trajectory segmentation algorithm
receives as input a set of trajectories of pitch candidates and outputs a set of seg-
mented trajectories, i.e., note candidates.

Two types of segmentation have to be conducted. The most intuitive one is fre-
quency segmentation, where the goal is to separate all the different frequency notes
that are present in the same trajectory. The other one, pitch salience segmentation,
aims at separating consecutive notes that have the same fundamental frequencies,
which the MPTC algorithm may have interpreted as forming only one note. This re-
quires segmentation based on salience minima, which mark the limits of each note.
Here, it is important to say that the salience value depends on the evidence of pitch
for that particular frequency, which is lower on the onsets and offsets. Consequently,
the envelope of the salience curve is similar to an amplitude envelope: it grows at the
note onset, has then a more steady region and decreases at the offset. Thus, notes can
be segmented by detecting clear minima in the pitch salience curve.

As for frequency segmentation, the main idea is to find sufficiently long sequences
of the same note number. Only then trajectories are segmented. When note transitions
are found but the current note sequence is not long enough, i.e., larger than nine
frames (as defined in the MPTC algorithm), the trajectory is not segmented, since it
may correspond to the start of a glissando region. Furthermore, when we find short
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sequences delimited by the same note number, e.g., {70, 71, 71, 71, 71, 70}, these are
interpreted as possible modulation regions, and so no segmentation takes place.

After frequency segmentation, the obtained candidate notes must be analyzed so as
to check whether they should be further divided. In fact, there may be consecutive
distinct notes at the same fundamental frequency that, erroneously, form a unique
long note. In this situation, those notes must be segmented. In order to accomplish
this task, salience segmentation takes place. The main idea is to find clear pitch sali-
ence minima that suggest the presence of more than one note, as referred before.

Finally, after all notes are segmented, their onset and offset times are adjusted. For
each note, we get its maximum salience value and then define the onset as the first
frame were the salience rises above 20% of the maximum salience found. The proce-
dure is the same for the offsets, i.c., the note offset corresponds to the first frame
where the salience rises above 20% of the maximum salience, starting from the end.

A detailed description of the implemented algorithm is presented in [14].
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Fig. 7. lllustration of the trajectory segmentation algorithm

Fig. 7 illustrates trajectory segmentation, using the initial trajectories from the
MPTC algorithm (Fig. 6). The obtained notes are depicted with thick lines. We can
see that glissando and modulation regions are properly dealt with (check notes start-
ing approximately at time 1.5s). Particularly, the transition that is observed in Fig. 4
around time 1.5 s, which corresponds to a glissando, was kept within the same note
instead of being separated into the several notes it traverses. Furthermore, some tra-
jectories are truncated as a consequence of the assumption for onset and offset detec-
tion.
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2.4 Note Elimination

The objective of the fourth stage of the melody detection algorithm is to delete some
of the note candidates, based on their saliences, durations and on the analysis of har-
monic relations. The note elimination algorithm receives as input a set of note candi-
dates and outputs a reduced set of notes, relevant for melody extraction.
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Fig. 8. Illustration of the note elimination algorithm

First, low-salience notes are deleted. A note is low-salience if its average salience
is below 20 and if the number of frames whose salience is above that threshold is not
enough, i.e., less than 5 frames. Next, all the notes that are too short, i.e., whose dura-
tion is below the minimum of 9 frames, defined in the MPTC algorithm, are also de-
leted. Finally, we look for harmonic relations between all notes, based on the fact that
some of the obtained pitch candidates are sub-harmonics of real pitches in the sound
wave. If two notes have approximately the same onset and offset times and are har-
monically related, it is possible that the lower one is just a sub-harmonic of the higher
one. Therefore, we compare their respective saliences in order to take a decision: if
the salience of the lower note is less than 60% of the salience of the higher note, the
lower one is eliminated. We describe this algorithm in greater detail in [14].

Fig. 8 illustrates note elimination, based on the note candidates of Fig. 7. The ob-
tained notes are depicted with thick lines. It can be seen that many of the note candi-
dates are eliminated at this point.
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2.5 Melody Extraction

In the final stage of the present melody detection system, our goal is to obtain a final
set of notes comprising the melody of the song under analysis. The melody extraction
algorithm receives as input the set of notes returned by the note elimination algorithm
and outputs the final melody notes.

This stage of the proposed system, being probably the most important one, is also
the most difficult one to carry out. In fact, many aspects of auditory organization in-
fluence the perception of melody by humans, for instance in terms of the role played
by the pitch, timbre and intensity content of the sound signal. In our approach, we do
not attack the problem of source separation, as would normally be the case. Instead,
we base our strategy on the assumption that the main melodic line often stands out in
the mixture, as referred in the Section 1.

This algorithm starts by analyzing intersections between notes. The beginning and
end of intersection regions is used to segment the sound signal, as illustrated in Fig. 9,
where s; stands for the i-th obtained segment.

MIDI note number

s, s, s;

Time (s)

Fig. 9. Segmentation based on note intersection

Then, for each segment, we determine the three most salient notes, based on the
average pitch salience of each note in each segment. Notes below MIDI note number
50 (146.83 Hz) are excluded. This procedure is motivated by the fact that the notes
comprising the melody are, usually, in a middle frequency range.

Next, we eliminate all the notes that are not dominant, i.e., that are not in the three
most salient notes for more than 2/3 of their total number of frames or do not have the
highest salience for more than 9 frames. Finally, we do not allow any simultaneous
notes. Therefore, for notes with approximate onsets and offsets we keep only the most
salient one, then we eliminate notes included in larger duration notes and truncate
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notes that end after the next note starts (or vice-versa, depending on their respective
saliences in the common segments).

Our melody extraction algorithm is described in detail in [14].

Fig. 10 illustrates melody extraction, based on the example in Fig. 8. The final
melody notes are depicted with thick lines.
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Fig. 10. Illustration of the melody extraction algorithm

3 Experimental Results

One difficulty regarding the evaluation of MIR systems results from the absence of
standard test collections and benchmark problems. Therefore, we created our own test
database, having care regarding its diversity and musical content. We collected ex-
cerpts of about 6 seconds from 12 songs, encompassing several different genres. The
selected songs contain a solo (either vocal or instrumental) and accompaniment parts
(guitar, bass, percussion, other vocals, etc.).

The obtained results are summarized in Table 2. There, “V” stands for vocals and
“I”” stands for instrumental. Fig. 11 shows an example of the results of the melody de-
tection system for an excerpt of the song “Thank You”, by Dido.

In the example in Fig. 11 we can see that the correct notes (thick lines) match the
obtained melody notes (thin continuous lines) in most of the cases. The undetected
notes are marked with circles. As can be seen, two of the three missing notes were
present in the notes obtained after elimination (dotted lines). One of the missing
notes, approximately at time 5.8s, corresponds to erroneous trajectory segmentation.
There are also other minor segmentation errors.
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Table 2. Results of the melody detection system

37

. Solo  #Total #Correct
Song Title Genre Type Notes Notes
Pachelbel’s Kanon Classical I 16 8 (50%)
Handel’s Hallelujah Choral v 15 n.r.
Enya — Only Time Neo-Classical v 11 10 (90,9%)
Dido — Thank You Pop \% 16 13 (81.25%)
Ricky Martin — Private o
Emotion Pop v 10 6 (60%)
Avril Lavigne — Compli- p, ' o o V14 9(64.3%)
cated
Claudio Roditi — Rua Dona 0
Margarida Jazz / Easy I 19 18 (94.7%)
Mambo Kings — Bella o
Maria de Mi Alma Bolero I 12 8 (75%)
Compay Segundo — Chan Latin v 10 .
Chan
Juan Luis Guerra - . o
Palomita Blanca Latin Rumba v 10 8 (80%)
Battlefield Band — Snow on . o
the Hills Scottish Folk I 26 20 (76,9%)
Saxophone riff (monophonic) I 6 6 (100%)
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Fig. 11. Detected melody for “Dido - Thank You” excerpt

The detected melody notes were compared with the correct notes, previously hand-
labeled. In the absence of the melody line, the system detected the dominant accom-
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paniment part, since sound sources are not discriminated. This can be seen in Fig. 11,
by the thin continuous lines. This is consistent with the way humans seem to memo-
rize melodies: a mix of solo regions with accompaniment regions, in the absence of a
solo. However, we decided to ignore the notes where the accompaniment part domi-
nates, in the same way as Goto does [7]. In order to extract only the melody, we
would need a means of separating notes according to their sources. The most intui-
tive, but complex, way to accomplish this task would be to use timbre models. Other
possibilities would be to separate notes according to their frequency ranges, note in-
tensity levels (since the intensity of a solo varies usually in a smooth way) or duration
of notes (e.g., it is not likely that a short duration note in the middle of two long notes
belongs to the same source as them).

In our test cases, we observed that some of the notes were erroneously segmented
(too much or too little segmentation) and others were shorter than the original ones.
This resulted from noise in both the frequency and salience sequences, as well as fre-
quency deviations in the MPTC algorithm, which lead to excessive trajectory seg-
mentation. The noise in the salience sequences results often from interference from
other sources in the sound mixture, namely percussive instruments. One possible way
to deal with this issue would be to smooth the frequency and salience sequences be-
fore segmentation. Another possibility would be to filter out percussive sounds from
the mixture, which is a challenging task. We also observed a few semi-tone devia-
tions (a small number of them). These errors resulted from the previous one and so
should diminish after we deal with the problems coming from segmentation. We de-
cided to ignore these small errors since our goal is to check whether a note is present
or not, no matter in how many sub-notes the algorithm divides it. These errors can be
reduced as was referred.

We can see that the algorithm could not find any reasonable melody in some ex-
cerpts (“#Correct Notes = n. r.: not reasonable”). However, in the cases where the
melody stands clearly out of the background and percussion is not too intense, good
results were achieved, which matches Goto’s results [7]. In two of examples, the sys-
tem achieved an accuracy close to 100% (only one missing note). Furthermore, the
results obtained for pop/rock and rumba songs surprised us positively, since they
have strong percussion (Juan Luis Guerra), as well as intense guitars (Ricky Martion)
with distortion (Avril Lavigne).

It is also worthwhile to say that, in the tested examples, many of the missing notes
were still present after the note elimination stage. This suggests that a more robust
melody extraction module could lead to better results.

We also tested our system with a simple monophonic saxophone riff, as referred
throughout this paper. In this example, the results were very good in terms of detec-
tion of glissandos, vibratos and note onsets and offsets. Consequently, we hope our
system could be used as a robust monophonic pitch detection tool.

4 Conclusions

We have presented a system for melody detection in polyphonic musical signals. This
is a main issue for MIR applications, such as QBH “real-world” music databases. The
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work conducted in this field is presently restricted to the MIDI domain, and so we
guess we make an interesting contribution to the area, though our results were not sat-
isfactory enough for real applications. However, the achieved results are encouraging,
since we have not exploited the full potential of our approach yet. Furthermore, to our
knowledge, only Goto [7] addresses the issue of melody detection in polyphonic mu-
sic, but without trying to explicitly extract notes. Also, our system is reasonably sim-
ple and light, except for the multi-pitch detection module, due to cochlear modeling
and auto-correlation computation.

Regarding future work, we plan to further work out some of the described limita-
tions, namely devising a more robust algorithm for melody extraction. Additionally,
we plan to apply some sort of pre-processing in order to filter out percussive sound
components, which is a very demanding task. Therefore, we plan to evaluate the fea-
sibility of Independent Component Analysis for source separation. The main idea
would be to separate the solo and accompaniment parts (namely, percussive ones) and
then detect the melody in the solo part using our proposed approach. Additionally, we
plan to evaluate and compare other types of pitch detectors and to adapt some of the
techniques proposed in the monophonic pitch extraction context.
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Abstract. We propose a robust probabilistic pitch (fo) estimator in
the presence of interference and low SNR conditions, without the com-
putational requirements of optimal time-domain methods. Our analysis
is driven by sinusoidal peaks extracted by a windowed STFT. Given
fo and a reference amplitude (Aop), peak frequency/amplitude observa-
tions are modeled probabilistically in order to be robust to undetected
harmonics, spurious peaks, skewed peak estimates, and inherent devi-
ations from ideal or other assumed harmonic structure. Parameters fo
and Ao are estimated by maximizing the observations’ likelihood (here
Ap is treated as a nuisance parameter). Some previous spectral pitch
estimation methods, most notably the work of Goldstein [3], introduce
a probabilistic framework with a corresponding maximum likelihood ap-
proach. However, our method significantly extends the latter in order to
guarantee robustness under adverse conditions, facilitating possible ex-
tensions to the polyphonic context. For instance, our addressing of spu-
rious as well as undetected peaks averts a sudden breakdown under low-
SNR conditions. Furthermore, our assimilation of peak amplitudes facili-
tates the incorporation of timbral knowledge. Our method utilizes a hid-
den, discrete-valued descriptor variable identifying spurious/undetected
peaks. The likelihood evaluation, requiring a computationally unwieldy
summation over all descriptor states, is successfully approximated by a
MCMC traversal chiefly amongst high-probability states. The MCMC
traversal obtains virtually identical evaluations for the entire likelihood
surface at a fraction of the computational cost.

1 Introduction

Fundamental frequency ( fo) estimation finds application in many areas of acous-
tics and digital audio. A robust estimation is especially relevant in music informa-
tion retrieval tasks, where pitched signals may encounter significant interference
from noise or other musical events.

To this end, we propose a high quality fo estimation in the presence of inter-
ference and poor signal-to-noise ratios without the computational load and stor-
age costs of optimal time-domain methods. The input signal is preprocessed by
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a STFT followed by a sinusoidal peak extraction, outputting a list of frequency-
amplitude pairs. The fy estimation operates directly on this peaklist.

Absent interference and irregularities, the k" frequency in the observed peak-
list will be kfy. We denote this ideal, fictitious set of peaks the input peaklist.
The actually observed peaklist, denoted the output peaklist, is perturbed by one
or more of the following irregularities:

— Undetected peaks: A peak may be beneath the noise floor or masked due
to interfering sinusoids close in frequency.

— Spurious output peaks: Interfering signals may themselves lead to addi-
tional peaks, or in a rare case, sidelobe peaks may be detected.

— Skewed frequency estimates: A natural inharmonicity may occur. Fur-
thermore, interfering sinusoids may perturb STFT frequency peak estimates
even when a peak is detected. An additional bias may incur due to the
parabolic interpolation between STF'T bins.

Given a probabilistic model of the output peaklist conditional upon fy and
Ap, we estimate fy via maximum likelihood, treating A( as a nuisance parameter.

Some pioneering work in spectral pitch estimation, for instance Goldstein’s
method [3], has introduced a probabilistic framework operating on STFT peaks.
While the latter approach does account for the possibility of undetected peaks,
the issue of spurious peaks so far remains unaddressed. As we demonstrate,
a proper accounting for spurious peaks becomes vitally important under low-
SNR conditions, where approaches which do not consider them often experience
a sudden breakdown. A practical context arises, for instance, when detecting
primary pitch formations in a polyphonic setting. A further advantage of our
approach is the ability to utilize peak amplitudes via prior information concern-
ing timbre. Appendix 5 provides a detailed comparison between our method and
a suitable generalization of Goldstein’s method under identical computational
requirements.

2 Probabilistic Model for the Output Peaklist

Figure 1 illustrates our probabilistic model for the output peaklist given fy €
[0,7'('], Ap € RT.

2.1 The Hidden Descriptor
We introduce a hidden descriptor
DeD= U?:O {7]:7, 7B7, 707}N (1)

specifying linkage between the input and output peaklists, as in Figure 2.

Let index j refer to the increasing-frequency sorting order of the aggregation
of all input peaks and spurious output peaks. Then D(j) = T’ labels an unde-
tected input peak; D(j) = B’ labels an output peak linked to some input peak,
and D(j) =0’ labels a spurious output peak.
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Fig. 1. Probabilistic model: descriptor, input and output peaks. Dotted circles
describe degenerate (deterministic) relations; all other relations are probabilistic.

D-{BOB BI B O}

Fig. 2. Linked input and output peaks with descriptor. Sizes of circles and X’s
represent relative peak amplitudes.

Let Fp, and Ay, be parallel vectors of output peak frequency and amplitude
observations. We denote their observation spaces:

Fyo € F = U, 1 [0, (2)
Ay € A= USR5, {RF}™ 3)

Similarly, let Fj, and A;, be the (fictitious) input peak lists. Fj, is generated
according to a harmonic template given fy:

F(jiv) = Jiv - fo, Jiw € {1,2,...[7/fo]} (4)

Ajp consists of a parallel collection of amplitudes, dependent on a reference
amplitude Ay and decay parameter c4:

Ap (i) = Aocli? ™ (5)
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Now, we define mapping indices

J

. N A

Jin(J) = E Lipw=m10{D0)=T}
=1

J

. N A

Jbo(d) = Z Lipy="B}u{DW)="0"}
=1

J
> lpw=py (6)
=1

>

Jv(7)

Then if D(j) = 'B’, the ji" output peak, i.e., the observation {Fy,(jpo(j)),
Apo(jbo(4))} is linked to the ji input peak, i.e., that with frequency ji,(5) fo-
Otherwise the output peak is considered spurious.

Knowledge of D enables computation of the conditional likelihoods
P(Fpo, Avo| D, fo, Ag) and P(D]fo, Ap). Our goal is to choose fy and Ay such
as to maximize the unconditional likelihood, P(Fyo, Apo| fo, Ao), which entails a
summation over D:

P(Fyo, Aol fo, Ao0) =D P(D| fo, A0)P(Fio, Avo| D, fo, Ao) (7)

DeD

Before addressing the summation, we shall make explicit the forms of
P(Fboa AbO|D7 an AO) and P(D‘f07 AO)

2.2 Specification of P(Fpo, Abo|D, fo, Ag)

If Fy, and Ay, are invalid with respect to D and fy, then P(Fpo, Apo|D, fo, Ao) 2

0. The relevant validity conditions are as follows:

— V1 The number of output peaks (length of Fp,) must equal the number of
"B’ plus ’O’ symbols in D, i.e., Npo(D).

— V2 The frequency sorting order of the aggregation of all input and spurious
output peaks in {Fjp, Fp, } must match the order of corresponding 'T" and *O’
symbols in D.

Otherwise, for valid Fy,, Apo, our model admits the following factorization:
P(Fyo, Apo|D, fo, Ao) =P(Fyo|D, fo)P(Ap|D, Ag) (8)

In (8), frequency and amplitude deviations of output peaks are modeled as con-
ditionally independent given D, fy and Ag. Furthermore, we assume sufficient
spacing in frequency to prevent significant interactions between output peaks;
hence P(Fy,|D, fo) and P(Ap|D, Ag) factor as product distributions over the
individual peak observations:
Nypo
P(Fyo|D, fo) = H P(Fyo(jio)| D, fo) 9)

Jro=1
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Npo
P(Apo|D, Ag) = [ P(Abolieo)|D, Ao) (10)

Jbo=1
In case of a linked output peak, i.e., D(j) = 'B’, Fpo(Jbo(j)) is modeled as a
Gaussian dependence on the frequency of the corresponding input peak:

Fyo (jbo(7)|D(j) = 'B) ~ N (Fib(jz‘b(j)),%%,b) (11)

If the output peak is spurious, i.e., D(j) = ’O’, the frequency is modeled as
uniform [0, 7], via maximum entropy argument:

Fio (o ()| D(j) =07) ~ U(0, ) (12)

The output peak amplitude for a linked output peak is modeled according to
the result expected from a sinusoid plus Gaussian noise in the time domain. In
the frequency domain, 247, (jbo(j))/0% 4 follows the distribution of a noncentral
X5 with noncentrality parameter 2A% (ji(5))/0% ;, [4]-

» ( 243, (joo())

2
TAb

D(j) = ’B’) ~ w0 (13)

2
AL

Recall that, via (5), A;»(j) depends on the nuisance c4. A preferable solution
is to marginalize c4 with respect to some noninformative prior; however we have
not yet taken this step. Instead, we obtain acceptable results by fixing ¢4 ~ 0.95
and using 0% , = 0.25.

The amplitude of a spurious output peak is modeled as Gaussian with vari-
ance 0% ,. In this case, 243, (jvo(j))/0% ., follows a central x3:

, <2A§O (2jbo(j)) ‘ D(j) = ’O’) ~ X350 14)

UA,O

2.3 Specification of P(D|fp, Ao)

If D is invalid with respect to fy, we define P(D|fo, Ag) = 0. The corresponding
validity condition is:

— V3 The number of 'T’ plus ‘B’ symbols in D, i.e., Nj(D), must equal the
number of input peaks. The latter, fixed according to Nyquist considerations
(4), eliminates redundancies, as a missing input peak is equivalent to an
unlinked peak.

Otherwise, define D;, as D with the 'O’ symbols removed, i.e., for all j
such that D(j) = Tor'B’, Dy (jin(j)) = D(j). The factorization P(D|fo, Ag) =
P(Dip| fo, Ao)P(D|Dy, fo, Ao) separates the input peaks’ survival P(D;|fo, Ao)
from the spurious output peaks’ generation P(D|D;, fo, Ag). The survival distri-
bution is modeled as independent Bernoulli with decaying survival probability:
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P(Diy(jin) = "B’| fo, Ao) = 6} (15)
Now, let N,(D) be the number of O’ symbols in D. Since spurious frequencies
are generated according to a Poisson process,

P(No(D)|Dip, fo, Ag) = €™ | (16)

where ), is the mean number of spurious output peaks on [0, 7]. As
P(D‘Dzba fO?AO) = P<D|NO<D)7Diba fO,AO)P<NO<D)|Dib, fO?AO) (17)

it remains to specify the latter part of this factorization. The latter depends only
on the number of O’ symbols interleaved between each I’ or ‘B’ symbol, i.e., on

{N, k(D) g:o(D) where No k(D) = 3¢5, =k} 1{p()="07}- Since, conditional
upon N, (D), the spurious frequency locations are iid uniform on [0, 7], it follows
that

P(D|N,(D), D, fo, A0)=P({No 1(D)} ") | Dy, fo, Ao)

(18)
admits a multinomial distribution:
‘ NO(D)! HN_ib(D) pNo,k(D)
P({Nox(D)}"P) | Dy, fo, Ao) = b0k (19)
= P No (D).

where py, the probability of a single 'O’ symbol being interleaved in the k"
interval delimited by an 'T" or B’ symbol, is given by:

Fp(1)/, k=0
Pk = 1-— Fib<Nib<D))/7Ta k‘ = sz(D) (20)
[Fiv(k+ 1) — Fip(k)] /7, otherwise

As a result,

Nip (D)

P(D|fo, Ag) = e e ANo(D) H D
P PP N (D))

((bf)l{Dib(k):’B’} (1 _ (bf)l{Djb(k):’I’}

(21)

2.4 Implication of Validity Conditions

If any one of V1-V3 fail, P(Fy, Apo, D|fo, Ag) = 0. Thus, D can be skipped
in the summation (7). Otherwise a set of D satisfying all validity conditions is
isomorphic to the set of nonintersecting linkmaps between Fj, and Fy,, the latter
to be described. While the descriptor provides a convenient mechanism for the
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evaluation of the conditional likelihoods which form the unconditional likelihood,
via (7), the linkmap representation enables a straightforward enumeration of
valid descriptors.

Let Ny (D) be the number of 'B’s in D. The linkmap, denoted LeZtR2*No(D)],
is a matrix consisting of an input row, L(4,:), and an output row, L(o,:). Each
column describes a linkage between an input and an output peak. A linkage
must occur for each j for which D(j) = 'B’. We set L(i,j,(j)) = jin(j) and

L(o, ju(5)) = Jbo(3)-

Though a unique linkmap arises from a given descriptor, without V1-V3, a
given linkmap may arise from more than one descriptor.

For example, let

Fy ={0.5,1,1.5,2,2.5}
Fyo = {0.7,1,1.3,2.8}

and suppose L(i,:) = [2,4]; L(o,:) = [2,4]. This example is diagrammed in
Figure 3.

W v e © PEAKS

W O PEAKS
@ PEAKS

Fig. 3. Example linkmap

Any of the following descriptors may yield L:
D1 — {’17’70777B7’7O777I’77B’7’I7}
D2 — {’17’70777B7’7I77’O’77B’7’I7}
D3 — {7]:7’707’7B7’7O7”I’77B’77I’, 7:[” ’O’,’I?}

However, only D; satisfies V1-V3.
The unique specification of D follows:

Ny(D) is fixed by L;

N;p(D) is fixed by fo via V3;

— Npo(D) is fixed by Fp, via V1;

the relative ("I’ <> 'B’) and ("B’ <> ’O’) orderings are fixed by L;
the (T < ’O’) ordering is fixed by fy and Fp, via V2.

Since the number of 'T’,)’B’.and 'O’ symbols are fixed by L, as well as all
pairwise orderings, the D sequence itself is fixed. Thus, V1 - V3 establish the
isomorphism D « L.
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3 Enumeration Strategies

To evaluate the unconditional likelihood via (7), we must enumerate all valid
descriptors, i.e., those for which P(D|fo, Ag) > 0 and P(Fy,, Apo|D, fo, Ag) > 0.
We consider an exact evaluation of (7) via brute-force enumeration, then via an
approximate MCMC scheme. The latter constructs a random walk amongst the
descriptors which contribute most of the probability to this summation.

3.1 Exact (Brute Force) Enumeration

Due to the linkmap « valid descriptor isomorphism, a compact and exhaus-
tive enumeration of descriptors is achieved simply by enumerating all possible
linkmaps between N, input peaks and N, output peaks. Let

m e {O, 1, ...min(Nib, Nbo)}

be the outermost enumeration index representing the number of links. For each
m, we enumerate the (Nn;b) sets of m from Ny, input peaks in an outer loop and
the (1\7720> sets of m from NNy, output peaks in an inner loop. The extraction of
the descriptor corresponding to a given linkmap is straightforward. The total
number of linkmaps, hence valid descriptors, is as follows.

min(Nip, Npo)

#o= -y () (22)

m=0

For small Ny, and Ny, (e.g., N, Npo < 7), the enumeration is not prohibitive.
Exact enumeration proves useful in comparing approximate strategies. Unfor-
tunately, the nature of the combinatoric explosion becomes evident when N,
and Np, simultaneously become large. For instance, let N;; = Ny, = N. The

summation in (22) simplifies accordingly:
N 2
N 2N
D} = = 2
41(D} E;QQ () (23)

As discussed by Knuth, et al. [5], Stirling’s approximation reveals the following

asymptotic behavior:
2N 4N 1
= 1-0 24
(%)= ven -0 (x)] @

Hence, the number of required descriptor enumerations grows exponentially
with a common number of input/output peaks, to first order in the exponent.

3.2 Results from Exact Enumeration

An A4 piano tone, allegedly at 440 Hz, is recorded at 44.1 kHz with —14 dB
white noise added. A 227 ms frame is used to derive a pitch estimate. We set
Ag = A1/ca, Aj being the highest (fundamental) peak amplitude. Additionally,
we specify:
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— $, =055
— X = 10.0
— c4=035

~ o2, =(0.05f0)°
- 0'%711 = (05140)2
— 0%, =(0.054,)

The analysis is artificially truncated to the first seven input and output peaks,
to facilitate a tractable computation. As a result, each candidate fy requires
exactly 3432 likelihood computations. It should be noted that two of the seven
output peaks appear spurious.

The solid curve in Figure 4 displays the 0.05 power of the total likelihood
vs. fo, while the dotted curves display likelihood contributions summed over the
top 1 — 3 descriptors. (The 0.05 power is taken to improve readability of local
maxima.) Thanks to the scaling, the dotted curves are indistinguishable from
the main curve. The maximum likelihood estimate is fo = 0.0628 rad/sample
(441 Hz), while other local maxima indicate subharmonics.

To assess the contributions from the top three descriptors, Figure 5 shows
their fraction of total likelihood vs. fy. Table 1 displays also the total likelihood
fraction averaged over all fj, as well as the fraction of fy for which at least 99%
of the total likelihood is contributed by the reduced set of descriptors.

X107 Brute—Force Enumeration Results

Likelihood®®®
w £

N
T
L

-
L

0 , , , , , ,
0.02 0.04 0.06 0.08 0.1 0.12 0.14
Candidate f0 (rad)

Fig. 4. Likelihood surface from exact enumeration: 7 peaks, 2 spurious

Since indeed most of the likelihood concentrates in a few descriptors, compu-
tations may be reduced by an approximate MCMC navigation scheme traversing
chiefly among these descriptors. The latter is detailed in the following section.
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Likelihood Concentration of 1-3 Highest Probability Descriptors
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Fig. 5. Likelihood concentration for 1-3 descriptors

#Descriptors Average Likelihood Fraction Exceed 99% Fraction

1 .9581 .8312
2 .9970 9610
3 .9997 9870

Table 1. Likelihood concentration of 1-3 highest probability descriptors

4 MCMC Approximate Enumeration

In any MCMC scheme, the purpose is to construct a Markovian transition rule,
P(Dy+1|Dy) which preserves a desired stationary distribution [2]. We denote this
distribution as (D). We desire that 7(D) concentrate in descriptors yielding a
relatively high joint likelihood. To this end, we specify:

(D) o< [P(D|fo, Ao)P(Fho, Abo| D, fo, Ao)]™ (25)

where K > 1. K must not be too large, however, since K — oo implies 7(D)
concentrates on the set of descriptors yielding only the maximum joint likelihood,
which as Table 1 shows, can occasionally fail to capture most of the likelihood.

If P(Dy41|Dy) is irreducible, the resultant Markov chain will converge in
distribution to w(D) [1]. To facilitate fast convergence, Dy is initialized by the
McAulay-Quatieri (MQ) approximate matching algorithm [6].

P(Dy41|Dy) follows the Metropolis-Hastings rule [2]. A candidate Dj, is
sampled ~ ¢(D},|Dy), then Dj is accepted (i.e., Dyy1 = Dj) with probabil-
ity min(1, r(Dy, D},)); otherwise D41 = Dy, where:

_ m(Dy)a(Dk|Dy)
7(Dy)q(Dy,| Dy,)

The sampling distribution, ¢(Dj,|Dy), operates directly on the set of linkmaps
{L}, which exist in one-to-one correspondence with valid D. Let Ly < Dy and

r(Dy, D) (26)
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L) < Dj. Then q(Dj,|Ds) is chosen to satisfy some notion of adjacency on
{L, L,}. Any of the following moves may generate Lj:

1. Remove a link: Delete a column in Ly.

2. Add a nonintersecting link: If possible, choose any unlinked pair for
which a possible linkage does not intersect the current set of links, and
insert this pair as a column in L. To simplify the argument, consider Ly
as augmented with the set of ”phantom” boundary links, i.e., Li(i,0) =
Lk(j, 0) = 0; Lk(i, Nb(Dk) + 1) = sz(Dk), Lk(o, Nb(Dk) + 1) = Nbo(Dk)~
The nonintersection condition is satisfied if and only if there exists m €
{0, ce ,Nb(Dk)}, Jiv € {1, R sz(Dk)}, and jop € {1, e Nob(Dk)} for
which Ly (i,m) < ji < Li(i,m + 1) and Lg(o,m) < jop < Lg(0,m + 1).

3. Switch a link to adjacent input If there exists m €
{1,..., Ny(Dy)} for which Ly(i,m—1) < Lp(i,m) — 1, decrement Ly(i,m).
Similarly, if Ly (i, m)+ 1< Ly (i,m+1), increment L (i, m).

4. Switch a link to adjacent output The process is identical to (3), except
the switch position is Ly (o, m).

Figure 6 illustrates one example from each of the aforementioned categories
of move possibilities, where Ly originates from the linkmap example of Figure 3.

Given the current linkmap, N (Dy,), and Ny, (Dy), each set of move possibil-
ities is computed for each category. A category is selected equiprobably over the
categories with at least one move possibility, then a move is selected equiprobably
amongst the possibilities for that category.

If any move can occur with positive probability, and each of the possible
linkmaps generates a strictly valid Dy, i.e., 7(Dy,) > 0, the irreducibility of the
chain is guaranteed. Irreducibility follows via L < valid D isomorphism and the
fact we may reach any linkmap from any other linkmap by removing then adding
links one by one with nonzero probability.

4.1 Results from MCMC Approximate Enumeration

Under identical conditions generating Figures 4-5, Figures 7-8 respectively com-
pare the MCMC vs. pure MQ initialization and exact enumeration likelihood
functions, and display the MCMC and MQ likelihoods as a fraction of total like-
lihood. We seem to obtain faster convergence upon varying K according to the
“annealing” schedule:

K(0) = 0.05
K (k) =min (1.03K (k—1),5.0)

The visible dotted line in Figure 7 represents the MQ likelihood. Note that
the MQ likelihood seems close to the exact likelihood about the true fy and
subharmonics; however, as shown in Figure 8, almost none of the likelihood is
captured for other fy. The MCMC likelihood is visually indistinguishable from
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Fig. 6. Categories of move possibilities

the exact result. Likelihood concentration results are summarized in Table 2.
The MCMC obtains significant computational savings at essentially no change
in the fy-likelihood function: hashing likelihood computations for previously vis-
ited descriptors obtains an average of 22.38 likelihood computations per fo, vs.
exactly 3432 computations per fy for the brute force.

Method Average Likelihood Fraction Exceed 99% Fraction
MQ Init. only 1994 1948
MCMC 1-3.1819 107" 1

Table 2. Likelihood concentration of MCMC and M@ initialization

5 Conclusions and Subsequent Research

We have developed a probabilistic spectral pitch estimator robust to both un-
detected harmonics and spurious peaks. Our method computes not only a pitch
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X107 MCMC and MQ Enumeration Results
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Fig. 7. Likelihood surfaces: MCMC and M@ wvs. exact enumeration: 7 peaks,
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estimate, but evaluates an entire likelihood surface. In other words, the un-
conditional likelihood of the STFT peak observations, P (Fpo, Apo|fo), may be
evaluated for any candidate fy (given that the nuisance Ay has been eliminated).

Besides facilitating pitch estimation, our likelihood evaluation may comprise
a vital structural element in a hierarchical Bayesian inference for note values.
The latter proves quite useful when we wish to integrate information across
STFT frames, or exploit additional knowledge from musical structure. In figure
9, we illustrate a hypothetical Bayesian extension to melody tracking.

Here, M ® represents a labeled semitone value (e.g., A4, C5, etc.) responsible

for generating the t'» STFT frame: ( b;),A t)) Our goal is to compute the
posterior of M) given all STFT frames: P (M(t) ‘Fb(;:T), Aéi:T) ) By so doing,

a framewise maximization of this posterior (i.e., for each M (1)) “estimates” a
melody M) which minimizes the expected number of note errors.

The posterior inference P (M ®) ‘Fb(;:T), Aéi:T)> is facilitated by the hidden

Markovian factorization of the joint as indicated in Figure 9:

p (M(l:T),Fb(;iT),Al()iiT)> _p (M(1)> « ﬁp (Mu)‘ M(t—l))

T
XHP(JAH

Given the prior P (M(l)), the interfmme dependences P (M(t) ’ M(t_l)) and
the STEF'T frame likelihoods P (

<t>) (27)

bo

) one may apply standard hidden
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Likelihood Concentration of MCMC and MQ
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Fig. 9. Proposed melody tracker

Markov model (HMM) inference strategies, for instance the forward-backward
algorithm [7], to compute the desired posterior.

The structure of interframe dependences factors across two levels: literal
frame-to-frame dependences, and dependences across note transitions. Since the
STFT frames are usually quite short, many frames may appear between note
transitions. Hence, one may exploit significant additional structure by concen-
trating P (M " |[M=1) about the possibility M® = MU~1  while main-
taining P (M® # M= [ME=D) at a small but nonzero value to allow for
occasional note transitions. At the level of note transitions, the distribution
P (M® M=) given that a transition has occurred, i.e.: M® s M= may
be further restricted by specific knowledge or rules concerning melodic structure.

Ultimately, our ability to compute the posterior P (M ®) ’Fb(;:T), Aéi:T)> de-

pends on our ability to evaluate frame likelihoods. Since the relation between
note number and fundamental frequency is deterministic,
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(t)
bo ’Abo bo

P (R

Mm) _p (Fu) AW

fo) (28)

either our exact enumeration or MCMC traversal strategy may be used to eval-
uate the frame likelihood P (Fb(?, A[()?’ M(t)).

Such melody tracking extensions are presently under investigation. A further
extension is to generalize the frame likelihood evaluation to the multipitch case.
The latter may be embedded in a Bayesian chord recognition engine, analogously
to the manner in which our single-pitch evaluation is embedded in the proposed
melody tracker. Preliminary chord recognition results, presented in [8], seem
quite promising.
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Appendix: Comparison with Goldstein’s Method

The probabilistic framework introduced by Goldstein [3] may be recast into a
framework similar to ours, to facilitate comparisons. Let fy, as usual, denote
the fundamental frequency. The output peaklist, denoted F,, consists of a list of
observed peak frequencies, sorted by increasing frequency:

Fo={fo1)s--fo,N,)} (29)

Here f, x denotes the frequency of the k' observed peak and N, is the number
of observed peaks. Let F;, the (fictitious) template or input peaklist, be given
accordingly:

Fi={fu1-- funy} (30)
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where

faxk = kfo (31)

and N; is the number of input peak candidates considered.

A descriptor is necessary to express linkage between input and output peaks.
Define

D={ny,...,nn,} (32)

where each ny € Z7 signifies that the k" output peak corresponds to the ni"
harmonic of fy. The idea is each output peak frequency, f, x), is a noisy obser-
vation of the input peak with frequency f(; »,) = n fo-

The probabilistic dependence structure is represented in Figure 10.

Fig. 10. Equivalent probabilistic model: Goldstein’s method

As the observation f(, ) depends only on ng and fo, given D, P(F,|F;)
factors into a product distribution over individual Gaussians for each peak:

N,
P(F,|F;, D) = [[ N (fime)» o7) (33)

k=1

Since f(; ) is deterministically generated by D and fo, (33) simplifies as follows.

N,
P(F,|fo,D) =[] N (n&fo, o) (34)

k=1

. . No .
Noise variances {02}k=1 are unknown and hence become nuisance parameters
for the estimation. In [3], the issue is resolved by constraining each variance to
be proportional to the corresponding input peak frequency:

o = Knyfo (35)
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The rationale is that due to inharmonicity structure, more uncertainty is gen-
erated in the frequencies of high-number harmonics relative to the frequencies
of low-number harmonics. Hence, (34) simplifies accordingly, with K the only
remaining nuisance parameter:

No
P(Fylfo, K, D) = [T N (nfo, Knfo) (36)

The tolerance for uncertain inharmonicity structure provided by Goldstein’s ap-
proach remains so far unaddressed by our approach. However, it seems quite
valid, and we plan to correct our distributional specification for linked output
peak frequencies along the lines of (36) in a subsequent revision.

Thanks to (36), with D fixed, it can be shown that the likelihood maximiza-
tion with respect to fj is actually invariant to K. As a result, f 0,D, the maximum
likelihood estimate of fy with D fixed, obtains in closed form.

N (T /)’ 37
or =gy (o) /T o

In Goldstein’s approach [3], D, as in our approach, is treated as a nuisance pa-
rameter. While we marginalize D with respect to some prior, P(D| fy), Goldstein
includes D jointly in the likelihood maximization. Since we can maximize in any
order, the unconditional estimate of fy obtains:

fo max fo D (38)

The existence of a closed form solution for fo removes the need to construct a
search grid over candidate values for fj, thus drastically reducing the number of
computations necessary for the raw pitch estimate. However, the unconditional
likelihood evaluation is itself often of interest, either to express pitch disambigua-
tion, or to facilitate the Bayesian melody tracking briefly proposed in Section
5.

The maximization over D (38) induces a combinatoric explosion paralleling
that of our exact enumeration. In particular, the choice N; = 2N, requires
an identical number of descriptor candidates to be enumerated. Since each D
effectively represents a choice of N, objects from N,, the choices N, = N and

N; = 2N imply
#0= (%) (39)

We note that (39) matches the number of descriptor candidates required by our
exact enumeration (23).
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5.1 Results Comparison: Exact Enumeration Vs. Goldstein’s
Method

Goldstein’s method determines jointly the most likely fo and D. To compare
against our exact enumeration in terms of qualitative aspects such as pitch dis-
ambiguation, we must be able to evaluate the likelihood of the output peaks for
any fo. Therefore, we develop a suitable generalization of Goldstein’s method
enabling the unconditional likelihood for any fy to be evaluated in a manner
consistent with the evaluation for the most likely fo. In the latter case, the con-
ditional likelihood given D, K is maximized with respect to D and invariant
to K. Since the invariant condition may fail for a general f,, we obtain the
unconditional likelihood for a general fy by maximizing over D and K:

P(F,|fo) £ max P(F,|fo, K, D) (40)

The generalization (40) allows us to compare the unconditional likelihood
surfaces produced by Goldstein’s method against those generated by our exact
enumeration. By so doing, we may ascertain robustness under various interfer-
ence conditions. All examples utilize a 227 ms frame consisting of a 440 Hz piano
tone with —14 dB white Gaussian noise added. We take N; = 2Ny; though this
choice may seem rather contrived, it enables us to equalize computational com-
plexities across the two methods, via (39). Different interference conditions are
simulated by adjusting the noise floor threshold during peak selection.

By varying the noise floor threshold from 0.05 down to 0.0144 of the maxi-
mum STFT amplitude, from three to seven output peaks are accepted. In the
three-peak case (threshold = 0.05), no peaks are spurious. In the five-peak case
(threshold = 0.03), one low-frequency peak is spurious, and in the seven-peak
case (threshold = 0.0144), two become spurious.

In the absence of spurious peaks, Goldstein’s method exhibits impressive
performance, as Figure 11 displays. Unfortunately, as shown in Figure 12, for
the five-peak case, a single low-frequency, spurious peak may utterly destroy the
viability of the Goldstein’s fj estimate. Figure 13 displays results for the seven-
peak case, in which two of seven peaks are spurious; no improvement is evident.
By contrast, our fast approximate MCMC enumeration maintains a viable fy
estimate under identical conditions, as shown in Figure 14.

Lastly, we have shown that our MCMC approximation obtains virtually iden-
tical results to that of our exact enumeration, while significantly reducing the
computational costs induced by the traversal of descriptor states. It is plausible
that Goldstein’s method admits a similar MCMC traversal strategy, especially
when recast in the generalized likelihood evaluation framework outlined in this
Appendix. The latter investigation awaits further study.
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Goldstein Method Results, Noise Rel. Thresh = 0.05
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Fig. 11. Goldstein’s method likelihood surface: 8 peaks; 0 spurious

Goldstein Method Results, Noise Rel. Thresh = 0.03
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Fig.12. Goldstein’s method likelihood surface: 5 peaks; 1 spurious
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Goldstein Method Results, Noise Rel. Thresh = 0.0144
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Fig. 13. Goldstein’s method likelihood surface: 7 peaks; 2 spurious
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Abstract. Perceptual Tempo refers to listener’s tempo perception as
fast, moderate or slow, when he listens to a piece of music with fairly
constant overall tempo. Music perceived to be faster will have higher
Perceptual tempo than music perceived to be slower. Existing work on
using computer system to automatically estimate the tempo of a piece
of music mainly focuses on estimating the Score tempo or estimating the
"Foot-tapping’ tempo. However, the existing work is usually not able to
determine the Perceptual Tempo. This paper proposes an approach to
determine this Perceptual Tempo. Experimental results show that our
proposed algorithm is effective in estimating the Perceptual Tempo.

1 Introduction

Rhythm is referred as a temporal pattern with durational and accentual rela-
tionships and possibly structural interpretations [2]. Rhythm forms an impor-
tant part in music. One of the important features of rhythm is the beat, which
is defined as a perceived pulse marking off equal durational units [2]. The rate
at which beats occur is referred to as tempo, which is often expressed as the
number of beats per minutes (bpm).

When listening to a piece of music with fairly constant overall tempo, listeners
are able to tell easily whether it is fast, moderate or slow. In addition, between
two pieces of music with different overall tempo, listeners are able to decide easily
which is faster or slower. We will term this high-level tempo as Perceptual tempo.
Thus, Perceptual tempo represents the tempo as perceived by listener. Music
perceived to be faster will have higher Perceptual tempo than music perceived
to be slower.

Existing work on using computer system to automatically estimate the tempo
of a piece of music mainly focuses on estimating the Score tempo or estimating
the "Foot-tapping’ tempo. Score tempo refers to the tempo reflected in the music
score for musicians to follow as they played the music. Whereas Foot-tapping
tempo refers to the tempo listener sub-consciously tap along when he listens to
a piece of music. However, both the Score tempo and Foot-tapping tempo are
usually not the same as the Perceptual tempo. Figure 1 shows one example
where the two different music extracts have the same score tempo but different
perceived tempo. Based on the estimated Score tempo, the computer system

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 61-70, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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will interpret that these two music extracts have the same tempo. But the actual
perceived tempo of the second music extract is about three times slower than the
first music extract. As for Foot-tapping tempo, it does not usually correspond
to Perceptual tempo because Foot-tapping tempo is centered around average
human normal heart beat rate of about 80 to 100 bpm. Thus, for a piece of
music with very fast tempo, foot-tapping tempo is usually half of the actual
perceived tempo. Table 1 illustrates three pieces of music with different listener’s
tempo perception but having the same foot-tapping tempo. Based on these Foot-
tapping tempos, the computer system will interpret that these three music pieces
have the same tempo. However, the actual perceived tempos are different. To
date, there is no work done on estimating the Perceptual tempo.

J=100

Fig. 1. Hlustration of two different music extracts with same Score Tempo

Table 1. Illustration of three Different listener’s tempo peception with the Same
Foot-tapping tempo

Listener’s Foot-Tapping Tempo (bpm) Perceptual Tempo (bpm)
Tempo Percep-

tion

Fast 80 160

Moderate 80 80

Slow 80 40

For most of the music pieces, the Perceptual tempo perceived by listeners
with and without music knowledge is usually the same. However for some music
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pieces, Perceptual tempo may be perceived differently by listeners with music
knowledge and by those without. This paper proposes an approach to determine
the Perceptual tempo without applying any music knowledge.

There are various applications in determining the Perceptual Tempo. One
of them is that it enables the music retrieval system to retrieve music based
on listener’s tempo perception as fast, moderate or slow. In addition, one of
the recent work in music information retrieval is to classify and retrieve music
signal based on different emotion expressions in music. However, the retrieval
result obtained to date is either based on too broad classification of emotion
or the result is not satisfactory [8,11,12]. Perceptual tempo is one of the main
factor that enable listener to identify and classify different emotion expression in
music [7]. Further, in music psychology research, the empirical findings on how
the tempo affects different emotion in music are always in terms of Perceptual
tempo. Some of these research work are [1,5,6,9]. Thus, instead of using Score
or Foot-tapping tempo, using Perceptual tempo as one of the main features
in Emotion-Based Music Retrieval System will defintely aid in getting better
retrieval result. Similarly, determination of Perceptual tempo will also aid in
retrieving music signal based on different music genre.

The next section will describe and assess the related work in estimating
tempo. Following that, we will discuss our proposed approach and outline our
proposed algorithm. The subsequent sections will describe the test music data
used and the experimental results.

2 Related Work

The common approach in estimating the tempo of a music signal consists of three
stages: frequency analysis, amplitude envelops extraction and tempo analysis, as
shown in Fig. 2. Among different techniques, the main difference is in the tempo
analysis stage whereas the first two stages are rather similar.

Inpat Estumated
SE%. Gtaze | | Sfage 2 | Saze 3 Tempa
Frequency Analysis Ewrelops Extracton Temmpo & nalysis

Fig. 2. Common approach in estimating the tempo of a music signal

In frequency analysis stage, the incoming music signal is divided into various
frequency sub-bands. The number of sub-bands divided varies in different tempo
estimation techniques. At stage 2, the signal in each sub-band is smoothed to
produce amplitude envelops for each sub-band. At stage 3, the tempo analysis
algorithm estimates the tempo of the music signal from the smoothed amplitude
envelops. The tempo analysis algorithms proposed by previous researchers can
be classified into event-based and self-similarity based.
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2.1 Event-Based Approach

In event-based approach, the onset of the signal is estimated based on the pres-
ence of rapid rise in the amplitude envelops. Through the computation of the
Inter-Onset-Interval (I0I), multiple beat hypotheses are generated. As accurate
extraction of onset times in polyphonic music is still an unsolved problem, the
onset detected in the event-based approach is just a rough estimate. And the
event-based approach has to be based on the assumption that beat information
can be obtained from onset event. Furthermore, in order to estimate the tempo,
some other assumptions had to be made. Goto’s algorithm only analyzed music
with 4/4 timing, with particular style of music and with tempo range between 61
and 120 quarter notes per minutes [4]. In addition, he assumed that the chord
changes would occur in strong metrical position. Laroche’s algorithm had to
limit the estimate tempo to 70 to 140 quarter notes per minutes to avoid halv-
ing or doubling the estimate tempo [10]. Further, his algorithm only analyzed
music with constant tempo and he assumed that the onset will tend to occur on
the first quarter-beat or on the third one but will less often occur on the other
quarter-beats. Whereas Seppanen’s algorithm assumed that beats correspond to
accentuated notes [14].

2.2 Self-Similarity Approach

To detect periodicity, one of the techniques of the self-similarity approach uses
comb filters [13]. Comb filters are a set of filters with different delays that cover
the range of possible tempo. In this technique, a set of comb filters is applied
to the amplitude envelops and the estimated tempo is based on the comb filter
that produced the highest response.

Another technique of the self-similarity approach to detect periodicity uses
Autocorrelation Function (ACF). ACF compares one signal with the delayed
signal of itself. The ACF plot is plotted with the degree of similarity between
the signal and the delayed signal against time lag. At time lag zero, it will have
the highest similarity and thus it also represents the total energy of the signal.
The next highest peak away from time lag zero will reflect the starting time
where the rhythm pattern repeats. The peaks reflect the beats occurrence at
different duration. Thus, the duration and intensity of each beat occurrence is
reflected in the time lag and amplitude of each peak respectively.

There are few approaches in using ACF for tempo analysis. Foote et al. built
a beat spectrum using the highest peak found in ACF. The peaks in his beat
spectrum correspond to the repetitions in the audio [3]. Tzanetakis’ detected
the main tempos of the signal by accumulating the dominant peaks found in the
ACF of each segment over the whole music signal into a beat histogram. The
highest two peaks from the histogram reflect the two main tempos of the signal
[15]. However, till present, there is no work done in finding the best peak in ACF
plot to best represent the Perceptual Tempo.

Two recent works, one using comb filtering and the other using ACF tech-
niques are Scheirer’s and Tzanetakis’s algorithm respectively [13,15]. The follow-
ing sub-sections will explain their proposed algorithm and discuss the weakness
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of these two techniques in determining the Perceptual Tempo. We then propose
an improved tempo estimation technique based on these two techniques.

Scheirer’s Algorithm. As in the common approach in estimating tempo, the
input signal is first divided into six sub-bands and in each sub-band, the signal
is smoothed to produce amplitude envelops. A set of 100 comb filters is then
applied to the amplitude envelops in each sub-band. The output of each comb
filter is then summed across all sub-bands and the estimated tempo is based on
the output filter with the highest summed energy.

The weaknesses in using Scheirer’s algorithm to determine Perceptual Tempo
are firstly, his comb filtering technique could not detect amplitude envelops with
small amplitude variation. Thus, for music signal with small amplitude variation,
his algorithm is not able to determine the tempo accurately. Secondly, by sum-
ming the output of each comb filter across all sub-bands, the amplitude envelops
with higher amplitudes (strong beats) in individual bands are emphasized and
thus those lower amplitudes (weak beats) are indirectly de-emphasized. There-
fore, for music signal with alternate strong and weak beats rhythm, although
the listener is able to perceive the weak beats, the strong beat will dominate
the summed output energy across all sub-bands. This leads to his algorithm es-
timates the tempo lower than the actual perceived tempo. And finally by using
the comb filters, it is more computational expensive than ACF technique.

Tzanetakis’ Algorithm. In this algorithm, the input signal is divided into
different time segments. In each time segment, the segmented signal is divided
into different sub-bands and similarly, each sub-band is smoothed to produce
amplitude envelops. The amplitude envelops for each sub-band are then normal-
ized and the normalized envelops are then summed across all the sub-bands. In
analysing the tempo, ACF is computed from the normalized summed signal and
the dominant peaks are then extracted from the ACF plot. The dominant peaks
are determined by first removing repetitive peaks in the ACF plot and the first
three highest peaks from remaining peaks in the ACF plot are then selected as
the dominant peaks. The dominant peaks found in each time segment are then
accumulated over the whole music file into a beat histogram. The highest two
peaks in the beat histogram are taken as the two main tempo of the music signal.

There are a number of weaknesses in using Tzanetakis’ algorithm to de-
termine Perceptual Tempo. First, by taking the highest two peaks in the beat
histogram as two main tempos, his algorithm did not determine the actual tempo
of the music signal. Second, by normalizing the amplitude envelops, music signal
with some beats intensities that are insignificant to listener’s perception is am-
plified. Thus, for this type of music signal, his algorithm is not able to determine
the Perceptual Tempo. Third, by summing the energy across all sub-bands, the
strong beats are emphasized and the weak beats are indirectly de-emphasized.
As in one of the weakness in Scherier’s algorithm, for music signal with alter-
nate strong and weak beats rhythm, although the listener is able to perceived
the weak beats, the strong beat will dominate the summed output energy across
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all sub-bands. This leads to Tzanetakis’ algorithm estimates the tempo lower
than the actual perceived tempo. And finally, he selected the dominant peaks in
the ACF plot as the main tempos of segmented signal. However, the dominant
peaks found are often not corresponding to the Perceptual Tempo.

3 Proposed Approach

Our hypothesis of Perceptual Tempo is that it corresponds to the most salient
event among various music events in a piece of music. Thus, it should corre-
spond to the listener’s perception of the fastest tempo, above certain intensity
level, among various music events in a piece of music. In ACF plot, this tempo
should be reflected in the first event, or the shortest time lag, with the first peak
exceeding certain threshold.

Thus, we determine the Perceptual tempo by applying the above hypothe-
sis and by overcoming the weaknesses found in Scheirer’s and Tzanetaks’. The
following measures are carried out:

— Overcome the comb filtering problem by using ACF

— Overcome the normalization problem in Tzanetakis’ by analysing the tempo
from Un-normalized amplitude envelop.

— Overcome the summing across sub-bands problems by first estimating the
tempo in each sub-band. Instead of estimating the tempo by selecting the
dominant peaks found in the ACF plot, our proposed algorithm estimates
the tempo by applying the above hypothesis.

The following are the details of our proposed algorithm:

— As in the common approach, the input signal is first divided into six sub-
bands. Through empirical finding,we found that six sub-bands are sufficient
for our algorithm to determine the Perceptual Tempo.

— As in stage 2 of the common approach, in each sub-band, the signal is
smoothed to produce amplitude envelops.

— In analyzing the tempo, ACF is computed on each un-normalized smoothed
sub-band rather than on the normalized summed amplitude envelops across
all sub-bands as in Tzanetakis’ algorithm.

— In each sub-band, the peak in the ACF plot with the shortest time lag and
with peak magnitude above 20% of the total energy (peak magnitude at zero
time lag) is selected. This threshold of 20% was determined empirically.

— The Perceptual Tempo of the music signal is then determined by finding the
shortest time lag among the selected peaks.

4 Experimental Results

4.1 Test Data

The test data consists of 25 music extracts, where 5 are converted to WAV
format from MIDI and the rest extracted from CD recording and converted to
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WAV format. All the 25 music extracts are in 16-bit mono audio with sampling
frequency rate of 11025Hz. Duration of the music extracts is mostly the first
1 minutes of the music with a few exceptions with the first 30 seconds of the
music.

Each of the music extracts has fairly constant overall perceived tempo. In all
these extracts chosen, the tempo perceived by both listeners with and without
music knowledge is the same. The test data represents different listener’s tempo
perception. Some have very fast tempo, about 180 bpm, some moderate tempo
and some have very slow tempo, about 50 bpm. In addition, test data are made
up of a number of different musical genres, which include ballad, rock, popu-
lar music with vocals and with and without drumming, instrumental with and
without drumming, classical without drumming, jazz and blues.

4.2 Results

In Table 2, column 2 reflects the Ground truth or the listener’s tempo perception.
The Ground Truth is determined manually by tapping how fast or slow a piece
of test music is perceived. The tapping is based on the most salient event in the
music piece.

The experimental results obtained are in bpm and results in Bold and Italics
indicate the tempos that are not corresponding to Perceptual Tempo, or Ground
Truth in column 2. Due to expressive timing in music, it is rare to find music
pieces with fixed tempo throughout, although listener may perceived it to be
fairly constant. But rather, for music with fairly constant perceived tempo, the
tempo is usually vary slightly throughout the whole music piece. Therefore, if
the result obtained is slightly different from the Ground truth, it is considered
to be corresponding to the Ground truth.

Column 3 is the results obtained by running Scheirer’s codes. Column 4 is
the results obtained by running Tzanetakis’ codes. It indicates the 2 highest
peaks in the beat histogram generated from his code, with the left figure being
the highest and the right the next highest peak.

The last column is the estimated tempo generated from our proposed algo-
rithm. The table shows that the tempos estimated from our proposed algorithm
are the closest to the ground truth. This implies that our algorithm is effective
in determining the Perceptual Tempo of the music signal.

5 Discussion

In Table 2, almost half of the results obtained from Scheirer’s and most of the
results from Tzanetakis’ algorithm shows multiples or fractions of the ground
truth.

In Scheirer’s results, more than one-third of the 25 music extracts used were
either multiples or faction of the ground truth. Ballad 3, Popular 1 and Classical
1 to 4 have amplitude envelops with small amplitude variation. As discussed
earlier, Scheirer’s algorithm had problem in placing the correct perceived beat
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Table 2. Experimental Results. See Sect. 4.2 for description.

Genre Ground Truth Scheirer’s Tzanetaks’ Proposed
Approach
Ballad 1 73 146 72 /45 73
Ballad 2 70 69 191 / 137 69
Ballad 3 76 154 42 /101 77
Rock 1 102 101 50 /100 101
Popular 1 55 100 49 / 193 52
Popular 2 170 165 40 ] 81 163
Popular 3 69 69 258 / 139 69
Popular 4 64 64 63/ 127 64
Popular 5 140 136 268 / 134 134
Popular 6 132 66 66 /132 133
Popular 7 71 69 69/ 178 69
Popular 8 150 151 75 /99 151
Popular 9 72 66 66 / 126 88
Instrumental 1 170 86 56 / 166 170
Instrumental 2 150 154 60 / 151 153
Instrumental 3 175 89 44 /89 180
Instrumental 4 70 71 70/ 47 71
Instrumental 5 110 108 108 / 53 108
Classical 1 56 165 132 / 101 57
Classical 2 60 126 41 / 246 59
Classical 3 55 165 268 | 258 32
Classical 4 64 117 191 / 60 66
Jazz 1 105 109 46 | 72 109
Jazz 2 121 121 60 /161 121
Blues 1 67 66 139 / 67 65

with this type of amplitude envelops. Thus, the estimated tempo for these music
extracts was at least double of the ground truth tempo. Further, Popular 6,
Instrumental 1 and 3 are music extracts with very fast perceived tempo and
they all have rhythm with alternate strong and weak beats. As discussed earlier,
Scheirer’s algorithm summed the energy across all sub-bands. This emphasized
the strong beats intensity in each sub-band. Therefore, although listener is able
to perceived the weak beats clearly, Scheirer’s algorithm can only detect the
estimated tempo as half of the ground truth.

In Tzanetaks’ results, he did not determine which is the main tempo between
the two highest peaks selected. Thus, there is no conclusion into which is the
actual tempo estimated for each music extract. In addition, most of the results
obtained were not correspond to the ground truth. As discussed earlier, this is
because the ACF computation is based on the normalized summed amplitude
envelops across all sub-bands and that the dominant peaks in the ACF plot are
taken as the main tempos of the segmented signal.
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Our proposed method applies our hypothesis of Perceptual Tempo and over-
comes the weaknesses found in Scheirer’s and Tzanetaks’ tempo estimation al-
gorithm. Thus, as shown in Table 2, the results obtained from our proposed ap-
proach are close to the ground truth. This implies that our proposed approach
is effective in determining the Perceptual Tempo of the music signal.

6 Conclusion

In this paper, we proposed an approach to estimate the Perceptual tempo. Our
hypothesis of Perceptual Tempo is that it corresponds to the most salient event
among various music events in a piece of music. Thus, we determine the Percep-
tual tempo by applying the above hypothesis and by overcoming the weaknesses
found in existing work. Experimental results show that our proposed algorithm
is effective in estimating the Perceptual Tempo.

Advantages of our proposed approach are:

— It is simple and computation efficient way of determining the Perceptual
Tempo.

— It is more reliable than existing work in determining the Perceptual Tempo.

— This algorithm does not require prior knowledge about the music signal, like
musical timbre, genres or even notes or onsets.

— It does not limit to estimating tempo with only 4/4 timing or with particular
style of music.

References

1. Balkwill, L.L., Thompson, W.F. A cross-cultural investigation of the perception
of emotion in music: Psychophysical and cultural cues. Music Perception, vol. 17,
(1999), 43-64.

2. Dowling, W. J., Harwood, D.L. Music Cognition. Academic Press, London (1986).

3. Foote, J., Uchihashi, S. The Beat Spectrum: A New Approach to Rhythm Analysis.
IEEE International Conference on Multimedia and Expo, Tokyo, Japan (2001).

4. Goto, M. An Audio-based Real-time Beat Tracking System for Music With or With-
out Drum-sounds. Journal of New Music Research vol.30 issue 2 (2001) 159-171.

5. Gundlach, R.H. Factors determining the characterization of musical phrases. Amer-
ican Journal of Psychology, vol. 47, (1935), 624-644.

6. Hevner, K. The affective value of pitch and tempo in music. American Journal of
Psychology, vol. 49, (1932) 621-630.

7. Juslin, P.N., Sloboda, J.A. Music and Emotion: Theory and research. Oxford Uni-
versity Press (2001).

8. Katayose, H., Inokuchi, S. The Kansei music system. Computer Music Journal, vol.
13(4), (1989), 72-77.

9. Krumhansl, C.L. An exploratory study of musical emotions and psychophysiology.
Canadian Journal of Experimental Psychology, vol. 51, (1997) 336-352.

10. Laroche J. Estimating tempo, swing and beat locations in audio recordings. IEEE
Workshop on Application of Signal Processings to Audio and Acoustic (WASPAA),
New Paltz, New York, USA (2001) 135-138.



70 Bee Yong Chua and Guojun Lu

11. Li, T., Ogihara, M. Detecting Emotion in Music. International Symposium on
Music Information Retrieval (ISMIR), Baltimore, Maryland, USA (2003).

12. Liu, D., Lu, L., Zhang, H. Automatic Mood Detection from Acoustic Music Data.
International Symposium on Music Information Retrieval (ISMIR), Baltimore, Mary-
land, USA (2003).

13. Scheirer, E. Music Listening System. Doctor of Philosophy, Massachusetts Institute
of Technology (2000).

14. Seppanen, J. Computational Models of Musical Meter Recognition. Master of Sci-
ence Thesis, Tampere University of Technology (2001).

15. Tzanetakis, G. Manipulation, Analysis and Retrieval Systems For Audio Signals.
Doctor of Philosophy, Princeton University (2002).



Source Separation and Beat Tracking:
A System Approach to the Development of a
Robust Audio-to-Score System

Mario Malcangi

LIM — Laboratorio di Informatica Musicale
DICo — Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy

malcangi@dico.unimi.it

Abstract. A set of tools for pitch, metric and rhythm information matching on
musical audio streams are under development. The goal is a robust automatic
system capable to track musical audio data for information retrieval and access
purpose. Several problems have been identified and approached to be solved
separately, such as metric computation, rhythm recognition and pitch tracking.
This approach has been chosen to synthesize a whole processing model robust
enough to be applied virtually to any kind of music. A source separation model-
ing has been investigated starting from ICA model. An ICA modified unmixing
model has been proposed as preprocessing subsystem. This subsystem demon-
strated to be very helpful for efficient applying of processing algorithms to
rhythm and pitch tracking.

1 Introduction

Our research aims at automatic recognition of musical information in audio streams
and to gain the corresponding symbolic representation. The goal is very ambitious as
automatic recognition of musical information in audio streams is currently one of the
most complex pattern recognition task, more than speaker-independent vocabulary-
unlimited continuous speech recognition [1]. The reason is in the high degree of
complexity and variability of musical information related to its signal nature.

The field of automatic transcription of musical sounds has been explored since the
beginning of 1970s, when some first basic researches, such as the one on segmenta-
tion and analysis of sounds by digital computer by James A. Moorer at Standford
University [2]. Several important results has been gained in the last decades, above all
when non traditional signal processing and patterns matching methodologies has been
successfully used to solve some non linear problems, such as independent audio
sources separation.

Today the goal is larger than the one concerning a niche application such as auto-
matic music transcription. A larger goal is the development of automatic musical
sound information recognition system targeted to automate processes like information
retrieval on audio media and others similar applications.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 71-82, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Beat, rhythm and pitch tracking on audio are three rather distinct tasks, all essential
for a complete and efficient automatic musical sound transcription system. Each of
those may be simple and successful tasks if we refers to electronically-generated
sounds like amplitude modulated sinusoids, but became complex and faulty tasks
when applied to an orchestra symphony performance.

We propose a system approach that decomposes the whole problem in low com-
plex sub problems and lowers the complexity of audio information source. Independ-
ent source separation has been identified in our researches as a primary goal to be
gained prior to approach the solution of the general problem of audio information
matching and corresponding symbolic music scoring.

The proposed Audio-To-Score system development approach consists of a pre-
processing subsystem for sources separation, a set of processing subsystem targeted
to beat, rhythm and pitch tracking, and a soft-computing based post-processing sub-
system for decision on uncertain data.

Source separation and beat tracking have been developed and tested. Rhythm,
pitch and soft-computing based decision logic for score synthesis is under develop-
ment.

2 Sources Separation

Audio streams contain a mixture of sounds from different sources. Auditory Scene
Analysis (ASA) [3] is the process that leads to individual source extraction by a hear-
ing system based on localization, denoising and matching. The Computational Audi-
tory Scene Analysis (CASA) [4] is a computer-based implementation of ASA for
extraction of individual audio sources from a mixture of microphone-recorded multi-
ple sounds.

CASA is ideally a good approach to solve the source separation problem but for an
effective implementation it need to embed substantial knowledge of human auditory
system and psychophysical behavior [5]. Multiple microphone unmixing algorithms,
such as ICA (Independent Component Analysis), are to be considered a good com-
promise solution to the source separation problem as they are blind methods. ICA
works very well on mixture of independently recorded sound sources as it is able to
uncorrelate sources altered by acoustic environmental characteristics (delay and re-
flections) without any a-priori model. If an N-microphone N-sources is available,
ICA is able to separate them very efficiently [6]. Unmixing schema is internally esti-
mated by ICA algorithm on a statistical base. Fast ICA algorithm implementation is
also available for real-time applications [7].

Unfortunately ICA fails to unmix one-microphone recorded sound sources. In this
case, the most recurrent, environmental characterization is not dominant, and differ-
ent sound sources are not available to feed the input of this algorithm. This problem
became harder to solve using an ICA-based approach if multiple sources are gener-
ated from a single instrument playing a multiple voice musical score, such as a piano
played polyphonic song.

Anyway ICA unmixing is potentially a good approach the solution of the complex
problem of audio source separation. Original ICA algorithm can be successfully used
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to de-emphasize interferences among individual sound sources, then a modified ver-
sion, refiltering [8], can be applied to each unmixed sound source to derive separate
audio tracks where polyphony occurs.

Refiltering consists in constructing new sources by means of a selectively re-
weighting of multiband-splitted signals. Weights are variable over time and act as
masking signals:

s()=a;()b,()+ ax®)b:(t)+ as()bs()+ ...+ an()bu(?) 1
s(t) : signal to be estimated
ai(t): i-th reweighting coefficient
bi(t): i-th original source sub-band.

One-microphone source separation using refiltering is possible if masking signals
are optimally chosen and the whole process can be automated.
2.1 ICA Unmixing Model
Developed to solve the “cocktail party problem”, the Independent Component Analy-

sis (ICA) suits very well to unmix sound sources recorded by a set of independent
microphones.
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Fig. 1. Multiple sources can be separated if each one is captured by an independent micro-
phone.

Main property of ICA algorithm is its great efficiency in sources separation when
high statistical independence occurs among original sources and a mixture of them is
available:
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X;=18 1T a8t .t a,s, . 2)
Using array notation, mixing model can be described as:
x=As. 3)

ICA uses statistical independency propriety of the sound sources to estimates the
unknown mixing matrix 4. After 4 has been estimated, its inverse # can be computed
so that sound sources can be separated:

s =Wx. 4

Sound sources are not effectively computed but estimated, as the mixing matrix 4
has been estimated without any real knowledge about effective sound sources s. ICA
is a Blind Source Separation (BSS) method.

Statistical independency of the sound sources is a fundamental condition for a suc-
cessful ICA application. This is an applicable hypothesis for musical sound sources,
so that ICA can be applied successfully for this purpose.

2.2 ICA Modified Model

ICA unmixing processing model cannot be applied if we haven’t the N microphone
recording of the N sound sources. This happens in almost the totality of the cases, as
only final mastered version of musical execution is available (e.g. stercophonic re-
cording of an orchestra performance).
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Fig. 2. Multiple sources are generally mastered to a mono or stereo equivalent source.

A good choice to solve the above problem is to consider the audio source as a one-
microphone recording of multiple sources. To apply ICA to this case it is necessary to
process the one-microphone source so that a multiple-microphone set of sources can
be derived [9]. Refiltering can be a successful strategy to do it.
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A valid hypothesis is that each sound source carries relatively independent energy
information in a narrow band and in a short time interval. A short-term Fourier analy-
sis can be used to buildup a filterbank to be applied to the one-microphone source.
We can then synthesize the N-microphone sound sources useful to feed ICA algo-
rithm, and to estimate the original independent sources from a one-microphone
equivalent source.

Mised signsls

4

]
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Fig. 3. When pitch sequences are available as single sound streams, metric, rhythm, and pitch
extraction can be efficiently executed, as interference among sounds has been minimized.

We propose a dual-step preprocessing of an audio stream. First step consists in ap-
plying ICA to separate independent sound sources where multiple-microphone re-
cording is available. Second step consists in a refiltering action applied to the sepa-
rated independent pitch sequences embedded in each sound source.
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3 Metric and Rhythm Estimation

Starting from Scheires’s [10] and Sepénnen’s [11] works, a novel model for metric
estimation has been proposed [12].

Audio stream —s Omset detection ‘ Accent featuring ‘
o Click train Bamfaalic
I — I conversion
Tatum | |
detection Comb filtering Fuzzy
analyzer
A"
| Filtered click train |
¢ “ e ¢
ji Phase and frequency computation

BPM | |M;ter

Fig. 4. Metric estimation is a primary task in automatic music transcription as it makes avail-
able a set of important timing data concerning the musical information coded in an audio
stream.

Audio signal is first processed so that a set of click-train streams is computed.
Click-train data are useful for Inter Onset Intervals (IOIs) computation and for attack
detection. Resonant filter-bank processing is applied to click-train data so that noisy
data can be filtered and only useful data for BPM computation are passed. I0Ss in-
formation is used as control data for resonant filter-bank setting.

For meter estimation a different processing model has been defined. This is a sof-
computing-based processing (fuzzy rule-based) as linear modeling of this process is
too difficult to implement. To feed the fuzzy-logic analyzer engine a symbolic con-
version of click-train streams is needed and accent rules need to be available. Fuzzy
processor will be trained by means of expert knowledge transfer in terms of inference
rules. This part of the whole processing system is under development.

3.1 Onset Detection

To approach automatic beat measuring, audio stream has to be preprocessed so that
onset detection can be done with high degree of precision.
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Fig. 5. Onset detection processing flow includes filter bank processing and derivative to trans-
form audio signal in a pulse train like sequence.

The first processing step for onset detection is based on filter bank processing.
Audio stream has been splitted into N frequency bands as follows:

1. 0to200Hz

2. 200 to 400 Hz

3. 400 to 800 Hz

4. 800 to 1600 Hz

5. 1600 to 3200 Hz

6. 3200 to Nyquist rate

A set of 6™ order band-pass elliptic filters has been used to gain enough band sepa-
ration.
From each narrow band signal the envelope pattern has been computed as follows:

Env(n) = g(n) * abs[s(n)]
©)

s;(n) is the narrow band signal

g(n) is the impulse response of a 5 Hz low-pass Butterworth filter.
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Filterbank frequency response

Bands 135 Bands 24 &
0 : 0
-
_/ \u—-—
% -10 3;} -10
2 =
& &
= I
E E
& B 2
= =
b
T \ i 4 bt
0 61 100 200 60g] 1000 2000 \f\DDD 0w 6 mn/nf 60010/05 2000 6Dﬂ\ﬂ
] 3 7 !
Lowpass 1 Bandpass 3 Band pass 5 Bandpass2  Bandpass 4 Band pass 6
(0-200 Hz)  (400-800 Hz) (1600-3200 Hz) (200-400 Hz) (800-1600 Hz) (3200- Fsi2 Hz)

Fig. 6. 6™ order band-pass elliptic filters has been used to separate overlapping onsets.

First-order derivative is then applied to each envelope pattern to detect onsets. De-
rivative has been approximated through the difference.

ClickTrain(n) =0 if Env(n+1)-Env(n) <k
ClickTrain(n) = Env(n+1)  otherwise (6)

K : threshold level

3.2 Inter Onset Intervals and Beat Frequency

Given two onsets at times ¢/ and 72, tI < ¢2, Inter Onset Interval (IOI) is a time inter-
val occurring between the onsets and it is defined as 0o =2 — ¢1.

After 10Is have been measured, tatum, the minimum metric unit, has been com-
puted as the nearest maximum common divisor of 10Is.

This information has been used to drive a resonant filters bank. Comb filtering has
been used to this purpose.

Each comb filter have its own resonance frequency. If the frequency of a click
train is the same of the filter resonance, filter output signal level is high, otherwise it
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Fig. 7. Thresholding of derivative is useful to clean onset pulse train from background noise.

is low. Comb filters feature also harmonic resonance so that maximum output level
happens also at integral multiples of its characteristic frequency.
Comb filters resonance has been computed according to the following formula:

1 n—1

i
n—1

> rli?

i=0

energy(r)

e
Delay of the filter with maximum resonance is used to compute beat frequency.
BPM (Beat Per Minute) is computed as:

(y /fsClick)*60 . 8)

where y is the maximum resonance comb filter delay, and fsClick is the frequency
used to sample the click train envelope.
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Fig. 8. For each band resonance has been measured sampling the pulse train in a speed range.

3.3 Metrics Estimation

For accent recognition we consider only durational accent. This means that we don’t
consider harmonic change, pitch accent and other accent that need a frequency analy-
sis. This will be done later when more timing information has been collected.

After the selection of accent feature we use a fuzzy logic processor to detect accent
from the symbolic representation of onset.

Fuzzy logic processing has been introduced at this step, as it is too complex to ob-
tain a linear model of the accent detection. A fuzzy processor enables to transfer the
expertise knowledge (musician) into its rules and membership functions.

A fuzzy logic processor is then trained to recognize accents in the audio musical
sequence using as input harmonic changes, pitch accent and other extracted informa-
tion.

The last stage has the task to use the information recognized to find the measure of
the musical piece. After the resonant filter bank step, the period of the beat is evalu-
ated selecting the frequency of the resonator that has the maximum peak. Other func-
tions are applied to this step to find the best BPM prediction. The second step has the
task to try to find a high level of metrical structure. Accent recognition allows to
determinate the meter in a musical piece.
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4 Results

Only the part of the whole Audio-To-Score system concerning source separation and
beat tracking has been developed and tested to date. To demonstrate the complete
automation capability of the implemented subsystem an audio score (baroque dance
music) has been processed to compute synchronization data to drive a virtual puppet
to execute dance movies animation [12].

Beat tracking processing demonstrated to be very robust for monophonic musical
scores but non enough for polyphonic musical scores. If polyphonic audio stream is
de-emphasised by means of sources separation, then better performance has been
gained. This encourage us to investigate more on source separation as this lead to
simplify beat, metric and pitch tracking processing toward an efficient Audio-To-
Score system implementation.

Using independent sources separation as a preprocessing front-end of the rhythm
and beat tracking process we observe a rise in the performance of the whole system.
Noisy audio streams can be processed successfully as sources separation acts as a
noise reduction processing. Thresholds can be lowered without increasing of false
onset detection rate.

This result is a basic step to setup a framework for rhythm and pitch estimation
processing. Beat and rhythm data are to be used to feed a data-driven pattern match-
ing process.

5 Future Framework for Rhythm and Pitch Estimation

If metric is available, rhythm estimation became a simpler task and pitch computing
can be droved by the above information to be executed simpler and effectively. Lin-
ear signal processing is useful but not enough to avoid artefact and masking effects
due to very dynamic and frequency reach audio streams. A mixed-methodology ap-
proach is needed to develop a very robust Audio-To-Score system.

We propose a mixed-methodology approach (linear and non-linear processing) to
solve higher level information extraction from audio stream. This results in a robust
decision system on metric and frequency information coming from linear estimators.

Neural networks modelling can be also used for pattern matching purpose where a
physical instrument model is known. This can be more effective for pitch and rhythm
tracking when poor sources separation has been executed at pre-processing time.
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Abstract. This paper presents a method to identify segment boundaries in
music. The method is based on a hierarchical model; first a features is measured
from the audio, then a measure of rhythm is calculated from the feature (the
rhythmogram), the diagonal of a self-similarity matrix is calculated from the
rhythmogram, and finally the segment boundaries are found on a smoothed
novelty measure, calculated from the diagonal of the self-similarity matrix. All
the steps of the model have been accompanied with an informal evaluation, and
the final system is tested on a variety of rhythmic songs with good results. The
paper introduces a new feature that is shown to work significantly better than
previously used features, a robust thythm model and a robust, relatively cheap
method to identify structure from the novelty measure.

1 Introduction

As more and more of the music delivery and playback are made through computers, it
has become necessary to introduce computer tools for the common music tasks. This
includes, for instance, common tasks such as music playback, control and summary.
This paper presents a novel approach to the music segmentation tasks based on
rhythm modeling. Music segmentation is here seen as the identification of boundaries
between common segments in rhythmic music, such as intro, chorus, verse, etc. These
boundaries often consist of changes in the rhythm. The segmentation work undertaken
here introduces structure in the music, whereas the previous work [15], on which this
work is partly based, mainly investigated the tempo.

The segmentation is useful for many tasks. This approach, which is both real-time
and not too processor intensive, is useful in real-time situations. One use is to perform
live recomposition, using for instance Pattern Play [20], where the found segments is
reintroduced into the music, potentially after some effects performed on the segment.
Another use is to assists Djs in computer based DJ software, such as Mixxx [1], for
beat mixing, intro skipping, or other uses.

The current approach is built on previous work in beat and tempo estimation [15],
where a Beat Histogram was used to estimate the tempo. Only the maximum of the
beat histogram was used. In this work, the full histogram is calculated for each time
frame. The self-similarity [8, 9] of the histogram, which is here called a rhythmogram,
is calculated, and a measure of novelty [9] is extracted. The novelty measure is only
calculated on the diagonal of the self-similarity matrix, which thus necessitates only
the calculation of a small subset of the full matrix. Finally the segments are found by

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 83-95, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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smoothing the novelty measure, identifying the peaks (the segment boundaries), and
following them to the unsmoothed case in several steps using a technique borrowed
from edge detection in image scale-space.

Several authors have presented segmentation and visualization of music using a
self-similarity matrix [10, 2, 21] with good results. Other methods to segment music
include information-theoretic methods [7], or methods inspired from ICA [3].

When designing a music section grouping, or section-clustering algorithm, it is
intuitive to try to understand what knowledge there is about how humans go about
doing the same task. Desain [6] introduced the decomposable theory of rhythm, in
which rhythm is perceived by all note onsets, in what he modeled as essentially an
autocorrelation step. Scheirer [23] made some analysis by synthesis experiments, and
determined that rhythm could not be perceived by amplitude alone, but needed some
frequency dependent information, which he constructed using six band-pass filters.
No experiments were done using filtered signals, by varying only the filter cutoff
frequency. This would make probably the success of one amplitude-based feature, if it
were suitably weighted by e.g. an equal loudness contour, or the spectral centroid,
which weights higher frequencies higher. Several studies have investigated the
influence of timbre on structure. [19] found that timbre did not affect the recognition
of familiar melodies, but that it did hurt recognition on non-familiar melodies.
McAdams [18], studied contemporary and tonal music, and found that the
orchestration affects the perceived similarity of musical segments strongly in some
cases. He also found that musically trained listeners find structure through surface
features (linked to the instrumentation) whereas untrained listeners focused on more
abstract features (melodic contour, rhythm). This helped non-musicians recognize
music with a modified timbre (piano and chamber music versions). Deliege and
M:élen [5] postulates that music is segmented into sections of varying length using cue
abstraction mechanism, and the principle of sameness and difference, and that the
organization of the segmentation, reiterated at different hierarchical levels, permits
the structure to be grasped. The cues (essentially motifs in classical music, and
acoustic, instrumental, or temporal otherwise) act as reference points during long time
spans. Deliége and Mélen furthermore illustrate this cue abstraction process through
several experiments, finding, among other things, that musicians are more sensitive to
structural functions, and that the structuring process is used for remembering, in
particular, the first and last segment.

Desain thus inspired the use of an autocorrelation function for the rhythm
modeling; Scheirer showed the necessity to model the acoustic signal somehow akin
to human perception. For simplicity and processing reasons a scalar feature, which
does indeed perform satisfactory, is used in this work Deliége and Mélen inspired the
use of a hierarchical model presented here, consisting of a feature, calculated from the
acoustic signal, a time varying rhythm abstraction, a self-similarity matrix, and a
novelty function extracted from the self-similarity matrix.

This paper is organized in the following manner. Section two presents the beat
estimation work that is used to find the optimal feature, and introduces the measure of
rhythm, section three presents the self-similarity applied to the rhythm, section four
gives an overview of the rhythm grouping in one song. In section 5, an evaluation is
performed, and finally there is a conclusion.
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2 A Measure of Rhythm

Rhythm estimation is the process of determining the musical rhythm from a
representation of music, symbolic or acoustic. The problem of automatically finding
the rhythm includes, as a first step, finding the onsets of the notes. This approach is
used here to investigate the quality of the audio features. The feature that performs
best is furthermore used in the rhythm model.

2.1 Beat and Tempo

The beat in music is often marked by transient sounds, e.g. note onsets of drums or
other instrumental sounds. Onset positions may correspond to the position of a beat,
while some onsets fall off beat. The onset detection is made using a feature estimated
from the audio, which can subsequently be used for the segmentation task. In a
previous work [15], the high frequency content was found to perform best, and was
used to create a beat histogram to evaluate the beat. Other related works include Goto
and Muraoka [11] who presented a beat tracking system, where two features were
extracted from the audio based on the frequency band of the snare and bass drum.
Later Goto and Muraoka [12] developed a system to perform beat tracking
independent of drum sounds, based on detection of chord changes. Scheirer [23] took
another approach, by using a non-linear operation of the estimated energy of six band-
pass filters as features. The result was combined in a discrete frequency analysis to
find the underlying beat. As opposed to the approaches described so far Dixon [7]
build a non-causal system, where an amplitude based feature was used as clustering of
inter-onset intervals. By evaluating the inter-onset intervals, hypothesis is formed and
one is selected as the beat interval. This system also gives successful results on
simpler musical structures. Laroche [14] built an offline system, using one features,
the energy flux, cross-correlation and dynamic programming, to estimate the time-
varying tempo.

2.2 Feature Comparison

There have been a large number of possible features proposed for the tasks and tempo
estimation and segmentation. This section introduces a new scalar feature, the
Perceptual Spectral Flux, and show that it performs better in note-onset detection than
other features.

Apart from the possible vector sets (Chroma, MFCC, PLP, etc), [15] evaluated a
number of different scalar features for use in beat estimation systems. The approach
was to identifying a large number of audio features, and subsequently evaluating the
quality of the features using error measures. A number of music pieces were manually
marked, by identifying the note transients, and these marks were used when
evaluating the features. In [15], the high frequency content (HFC) [17] was found to
perform best. In this work, however, another feature has been evaluated, which
performs better than the HFC. This feature, here called the perceptual spectral flux
(PSF), is calculated as
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N, /2 (1)

PSF,= YW, ((a,';)‘” —(a,’jl)m}
k=1

where n is the block index, and N, is the block size, and a; is the magnitude of the
Short-Time Fourier Transform (STFT), obtained using a hanning window. W, is the
frequency weighting used to obtain a value closer to the human loudness contour, and
the power function is used to simulate the intensity-loudness power law. The power
function furthermore reduces the random amplitude variations. These two steps are
inspired from the PLP front-end [13] used in speech recognition.

The error measures used in the evaluation is the signal to noise ratio (S/N),
calculated as the ratio between the sum of the kills (corresponding to the peaks and
corresponding slopes) of the peaks of the feature under test that are matched to a
manual mark to the sum of those that are not, and the matched ratio, calculated as the
number of matched peaks, divided by the number of manual marks. The feature peaks
are chosen as all local maximums above a given running threshold. As the threshold is
increased, the signal to noise increased, whereas the matched ratio decreases. The
thresholds necessary to obtain an arbitrary value of 75 % matched peaks (which is
possible in almost all cases) are found for all features, and the signal to noise ratio is
compared for this threshold. In [15], the high frequency content (HFC) was found to
have twice as good S/N ratio as the other measured features. Using the same material,
the PSF performs twice as good as the HFC. This can be tentatively explained as,
since the HFC weight the high frequency most, it indicates mainly the hihat, and the
transient instruments, such as the piano. The spectral flow, with no frequency
weighting, essentially favors the low frequencies, since these generally have
significantly more energy than the mid, or high frequencies. The PSF weight
everything approximately as the human ear, and would then indicate both the high
frequency sounds, but also the low frequency sounds, such as the bass, or other
instrumental sounds with less transient behavior.

The PSF is calculated on a block of 20 msec., with a step size of 10 msec. An
example of the PSF, calculated on an excerpt of Train to Barcelona!, can be seen in
figure 1.

2.3 Rhythmogram

The PSF feature indicates most of the manual marks correctly, but it has many peaks
that does not corresponds to note onset, and many note onset does not have a peak in
the PSF. In order to get a more robust rhythm feature, the autocorrelation of the
feature is now calculated on overlapping blocks of 8 seconds, with half a second
overlap. Only the information between zero and two seconds is retained. The
autocorrelation is normalized so that autocorrelation at zero lag equals one. This
effectively prevents loudness variations to have any influence. Other presented
models of rhythm include [21], which uses an FFT on the energy output of the

! By Akufen. Appearing on Various - Elektronische Musik - Interkontinental (Traum
CDO07), December 2001
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auditory filterbanks, and [22], whose rhythm patterns consist of the FFT coefficients
of the critical band outputs. The autocorrelation has been chosen, instead of the FFT
used by the two above-mentioned papers, for two reasons, first, it is believed to be
used in the human perception of rhythm [6], and second, it is believed to be more
easily understood visually
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Figure 1. Example of PSF feature, and manually marked note onset marks (dashed
vertical lines) for the piece Train to Barcelona.
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Figure 2. Rhythmogram for Train to Barcelona.
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If visualized with lag time on the y-axis, time position on the x-axis, and the
autocorrelation values visualized as colors, it gives a fast overview of the rhythmic
evolution of a song. This representation, here called a rhythmogram, can give much
information about the rhythm and the evolution of the rhythm in time. An example of
the rhythmogram for Train to Barcelona is shown in figure 2. The song seems to be a
4/4 with a tempo of 240 BPM, but in practice, the perceived beat is 120 BPM. In the
first minute, it has an additional 8" beat, which is transformed into a 12" beat for the
rest of the song, except a short period between 3 1/2 and 4 minutes, approximately.
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Figure 3. 2D and 3D rhythmogram for / must be dreaming.

Although the rhythmogram seems like a stable and robust representation, it can
easily be shown that the robustness is, in part, caused by the gestalt behavior of the
visual system. Indeed, if seen from another angle (in a 3D visualization), the
rhythmogram reveals more movement, i.e. changes in relative strength of each beat in
the measure, thus sometimes having different predominant beats in the measure. An
example of such a 3D plot for I must be Dreaming, by Mink de Ville is shown in
figure 3 (right). It is clear that it is not easy to segment the song according to a
difference in thythm. There seem to be an intro the first half minute, possibly repeated
at around 3 minutes. Some change is taking place at around 1 1/2, 2 1/2 and 4
minutes, each time followed by a small change in tempo. As the song seemed to be
played live, there is inherently an uncertainty in tempo, rhythm strength of each beat,
and other timbre phenomena, which is all influencing to some degree on the
rhythmogram.

3  Selfsimilarity

In order to get a better representation of the similarity of the song segments, a
measure of self-similarity is used.
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Several studies have used a measure of self-similarity [8] in automatic music
analysis. Foote [10] used the dot product on MFCC sampled at a 100 Hz rate to
visualize the self-similarity of different music excerpt. Later he introduced a
checkerboard kernel correlation as a novelty measure [9] that identifies notes with
small time lag, and structure with larger lags with good success. Bartsch and
Wakefield [2] used the chroma-based representation (all FFT bins are put into one of
12 chromas) to calculate the cross-correlation and identify repeated segments,
corresponding to the chorus, for audio thumbnailing. Peeters [21] calculated the self-
similarity from the FFT on the energy output of an auditory filterbank.
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Figure 4. L, norm (left) and cross-correlation (right) self-similarity for I must be
dreaming.

Generally, this measure of self-similarity is calculated directly on the feature(s),
but in this case, an extra parameterization is introduced, the rhythmogram. The low
sampling rate of the rhythmogram permits to calculate a rather small self-similarity
matrix that is faster to calculate and easier to manipulate. In addition, as the
rhythmogram seems to be close to a human perception of rhythm (cf. Desains
decomposable theory of rhythm [6]), this intermediate step is also believed to make
the self-similarity more directed towards rhythm than other features of the song, such
as timbre. As the self-similarity should work, even if there is a drift in tempo, the
cross-correlation self-similarity method is used, albeit it is significantly slower than
the L, norm method. This has also been shown to minimize the L, norm between an
audio feature and an expected a priori feature [14]. A comparison between the L,
norm and the maximum of the cross-correlation method of I must be dreaming is
shown in figure 4. The cross-correlation method (right in the figure) works best when
there is a tempo drift in the song, which there is in most songs.

The self-similarity matrix can now be segmented, and the segments can
furthermore be clustered. In this work, the song segmentation aspect will be detailed
in the following section.
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4 Causal Rhythm Grouping

The grouping, or segmenting, of a song, is the task of identifying segment boundaries
that usually corresponds to boundaries humans would identify. The rthythm grouping
indicates that orchestration and timbre is, as far as possible, omitted in the grouping,
and the causal approach indicates that it is intended for possible real-time
applications. In particular, the causal approach could permit the use of the identified
segments in real-time composition, for instance using Murphys Pattern Play
framework [20]. Another possible use is the identification of the 1% verse (or any
particular rthythmic segment) in DJ software, such as Mixxx [1].

On related work, Bartsch and Wakefield [2], used chroma-based features to
identify the repeated segment that corresponds to the chorus using cross-correlation.
Foote [9] used cosine distance self-similarity and radially-symmetric Gaussian kernel
correlation as a novelty measure that identifies notes for small lags and segments for
large time lags. Dannenberg [4] made a proof-of-concept using pitch extraction and a
matrix representation and melodic similarity algorithm on Naimi by John Coltrane. As
a final step, the segments were clustered on three different songs. Peeters [21]
converts the self-similarity to lag time and performs 2D structural filtering to identify
segments.

The task is to find segments that consist of audio with similar rhythmic structure.
As it is a causal approach, there is no knowledge about the rhythmogram ahead of the
current time.

The approach chosen is to calculate the cross-correlation self-similarity matrix at a
small lag time around the current time position only, and to calculate the novelty
function [9] at these time lags. As the segments in the self-similarity matrix consist of
squares around the diagonal, the boundaries of the squares can be identified by
correlation the diagonal with a kernel that has the same shape. Foote gives the option
of using either a binary checkerboard kernel, or to create a radially-symmetric
Gaussian kernel. No significant difference was found between the two kernels in this
work. An example of the novelty measure, calculated using the checkerboard kernel
and three different kernel sizes, for I must be dreaming is show in figure 5.

It is clear that the small kernel sizes favors the note onsets (although only the
relatively slow one, on the order of half the beat), whereas the large kernel sizes
favors the structure in the song. In addition, the peaks are changing position between
kernel sizes.

To identify the section boundaries, a method inspired from the scale-space
community [16] in image processing is used. In this method, which, when used on
images, is mimicking the way the images are blurred on a distance, the segment
boundaries are found on heavily smoothed novelty measure, and the boundaries are
then identified in the unsmoothed novelty measure.

The split-point time estimation is done on smoothed envelopes. The smoothing is
performed by convoluting the novelty measure with a gaussian,
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Figure 5. Novelty Measure for / must be dreaming and three different checkerboard
kernel sizes.

The segment boundaries are now found by finding the zeros of the time derivative
(with negative second derivative) of the smoothed novelty measure,
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The novelty measure is followed from the smoothed to the unsmoothed case in
several steps by a method borrowed from the scale-space theory used, for edge
detection, in image processing [16]. In case a peak is located near a slope, the slope
influences the peak position when the novelty measure is smoothed. When the novelty
function is less smoothed, it contains more noise, but the slope points correspond
more to the unsmoothed case. It is thus necessary to follow the peak from the
smoothed to the unsmoothed novelty measure, and to use enough smoothing steps so
the slope points can be followed. An example of the smoothing steps, and the
identified segment boundaries can be seen in figure 6.

Using an expert (the author) there is a certain resemblance between the intro, a
segment at 3 to 3 1/2 minutes and the end segment. In addition, there are three
segments consisting of verse-chorus at 0.5min to 1.5min, 1.5min to 2.5min, and
3.2min to 4.2min, the second of which the chorus lyrics is replaced with a guitar solo.

The automatic segment boundaries are found at 0, 0.2, 0.6, 1.5, 2.4, 3.3 and 4.4
minutes, where the zero and 4.4 minutes corresponds to the intro and end, the 0.6, 1.5
and 3.3 minutes corresponds to the verse chorus segments. The 0.2 minutes segment
corresponds to the introduction of the vocal in the song. The second repetition of the
intro theme was not found, but it seems that the automatic segmenting performs all in
all almost as well as this expert. It is clear from the figure that there is much novelty in
the song outside the found segment boundaries. More research is needed to assert
whether these in fact correspond to perceptual boundaries or not. Another potential
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problem of the smoothing method is that it sometimes identifies a weak segment
boundary in the middle of long segments, rather than a stronger boundary close to
another boundary.
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Figure 6. Example of the smoothed novelty function, peaks (‘+’), and the identified
segment boundaries ('0') for I must be dreaming.

5 Evaluation

The segmentation steps are the feature extraction, the rhythmogram calculation, the
self-similarity matrix calculation, the novelty measure, and the smoothing steps. The
feature extraction is performed using an FFT in O(N log,(N)) steps, the thythmogram
is calculated using an autocorrelation for each 8 seconds (800 steps), which can also
be performed in O(N log, (N)), the self-similarity matrix only needs to be calculated
on the diagonal (4 new values for each time step), and novelty measure is smoothed in
five steps. None of the last steps are very processor-intensive.

The segmentation has been performed on a small set (8) of rock and techno songs.
Whereas the rock songs follow the intro, chorus, verse and break scheme well, the
techno songs generally consists of long segments of music with no, or small
evolutionary changes, and short consecutive segments with radical changes. The
number of segments found is relatively stable for all songs, thus it seems that this
method is useful for music summary, for instance. The automatic segment boundaries
have been compared to human segmentation for the eight songs. First, it is obvious
that some of the segment boundaries consist of vocal or other instrumental changes
that are not found in the novelty measure. Around 10 % of the segment boundaries
are not found, and the same amount has been misplaced by the unsmoothing peak
following procedure. The smoothing makes it impossible to find short segments,
which thus does not have to be prevented. Some of the misplaced peaks should
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possibly be found using help from some observations. For instance, it seems that
some segment boundary peaks are preceded by a minima, i.e. before a change in
rhythm, there is a short period with less than normal change. Another observation is
that some segment boundaries are abrupt, but some consists of a gradual change
where it is not clear (without counting beats and measures) where the boundary is.

The segmentation process was furthermore performed on a larger database of
around three-hundred songs, consisting of child pop, pop, rock, noisy rock, world,
classical, jazz, and possible other genres. A detailed analysis of the results has not
been made, instead the performance of the segmentation system is evaluated using
two statistics: the length of the segments, and the number of segments per song. These
statistics are shown in figure 7.
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Figure 7. Statistics of the segmentation of a large number of songs. Length of
segments (top), and number of segments per song (bottom).

It is clear that most songs are found to have a small number of segments. The
extreme number of segments corresponds to four classical songs (Mozart and
Schubert). No further analysis of the performance of the system in classical music has
been made. An average duration of the segments of around 40 seconds seems
reasonable, and although more analysis of the exact locations of the segments
boundaries is necessary, it is concluded that in most respects the system is robust and
reliable.

6 Conclusion

This paper has presented a complete system for the estimation of segments in music.
The system is based on a hierarchical model, consisting of a feature extracting step, a
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rhythm model, and self-similarity step and finally a segment boundary identification
step. The paper introduces a feature, the Perceptual Spectral Flux (PSF) that performs
twice as good as a previously used feature. The rhythmogram is an intuitive model of
the rhythm that permits an instant overview of the rhythmic content of a song. It is
here used as a basis for the calculation of a similarity matrix [8]. In order to minimize
the processing cost for the similarity matrix calculation, an efficient segment
boundary method that only uses the diagonal of the self-similarity matrix has been
devised, using the novelty measure [9] and a method inspired from the scale-space
community in image processing [16].

The segmentation is intended to be used in real-time recomposition, in computer-
assisted DJ software, and as an automatic summary generation tool.

All the steps have been verified with formal and informal methods. The audio
feature (PSF) was found to be having a signal to noise ratio twice as good as the
previously used feature, the High Frequency Content (HFC). The rhythmogram was
shown to illustrate the rhythm pattern throughout a song. A 2D visualization was
preferred, as it enabled following of rhythm patterns that were otherwise perceived as
somewhat noisy in a 3D visualization. The self-similarity using cross-correlation was
preferred, as the correlation permitted a better self-similarity measure in songs with a
tempo drift. Finally, the segmentation was evaluated using a small database of
rhythmic songs (rock and techno). Even though some of the verse-chorus segment
boundaries could not be detected, as they consist mainly of lyric differences, most of
the segments were identified correctly. An added benefit of this model is that it
always identifies a suitable number of segments.
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Abstract. This paper presents the results of implementing and evaluating a
genetic algorithm to assist in the task of automatic counterpoint generation. In
particular, a fugue subject was used as an input for the system, while the
generated counterpoint melody was to act as the countersubject. The genetic
algorithm was tested with two different input melodies, and a basic set of rules
for fitness evaluation. Within this domain, the results were satisfactory. Finally,
the suitability of genetic algorithms for the task of rule-based melody
generation, as well as possible future work and enhancements to the
implemented system, are also reviewed and discussed.

1. Introduction

The task of composing music with the assistance of a well-defined algorithm has been
a greatly debated over time. W. A. Mozart’s dice game showed the feasibility of
generating simple pieces with an aesthetical appeal by using nothing more than a set
of musical motives and a pair of dice. Recently, the debate has focused on the use of
computers to create music by obeying a strict set of rules defined by the composer [1].

Leaving the debate aside, one can see the task of composing music as that of
applying formal rules over a starting melody until a satisfactory result is achieved.
Mathematical relations, for example, are one of the important rules used during this
process of incremental revision. The resulting piece is then a product of what Bruce
Jacob defines as a “hard work composition” [9], a composition that doesn’t come
from a magical moment of inspiration but rather from hours of frustrating an arduous
methodical work. Other authors use the term “compositional loop” [11].

One can then imagine a computer as a form of help in this process of hard work
composing. The role of the composer isn’t replaced by the computer, which just acts
as an assistant that carries out part of the mentioned arduous work, thus leaving the
composer with time to focus on other aspects of the composition. The task becomes
then to identify the specific processes that are well suited to be carried by a computer.

In this paper we explain why counterpoint generation is such a process. Then we
present the results of implementing a small-scale system that uses a genetic algorithm
in order to find a suitable counterpoint melody that can be arranged in a basic fugue
structure. Finally, some observations and possible future work are discussed.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 96-106, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2. The Problem

2.1 Motivation

Since William Schottstaedt proposed a system for automatic counterpoint melody
generation [12], no other author has approached the problem by using a search
algorithm. Instead, stochastic models have been primarily used instead for melody
generation [13,8], while other authors use genetic algorithms to focus on higher
aspects of the compositional loop [11].

Given this situation, it is valid to ask if genetic algorithms are a valid technique for
solving the counterpoint melody search problem. Schottstaedt’s system [12] used a
best-first search algorithm to find a suitable solution for the problem. We, in turn, are
interested in evaluating the suitability of genetic algorithms for this task. In particular,
we are interested on counterpoint melody generation for the task of arranging a simple
fugue. This is a two step process that is now presented.

2.2 Problem Definition

“For several hundred years composers have praised species counterpoint as one of the
best ways to learn to write music” [12, pg. 199]. Some of the formal rules for a good
counterpoint have even been stated since the eighteenth century; for example, J.J.
Fux’s “Gradus ad Parnassum”, published in 1725, presents a compilation of these.
Such a well studied process starts to suit the idea of computer assisted composition. In
more general terms, the process of generating valuable musical phrases, themes or
whole pieces can be stated as a computational task. For the particular case of
counterpoint melody generation, the task can be formulated as a search problem:
Given an initial musical phrase, find a suitable counterpoint melody from the space of
all possible melodies.

However, this proves to be an NP-complete problem once the search space is
formalized [12]. The search domain is essentially unlimited given the combinatorial
possibilities of individual notes in time, rhythm, harmony and melody [3]. If there are
16 ways of moving from one note to the next, then a short musical phrase of 10 notes
will generate a search space of 16" possible solutions. Given this situation, it
becomes necessary to impose some constraints to the search space (or to the decision
making algorithm) in order to make a proposed solution feasible.

Once the problem of finding an appropriate counterpoint melody has been
overcome, the compositional process can continue. Specifically, in this project the
idea was to generate a set of valid counterpoint melodies and arrange them in order to
create a Fugue. This encompasses the creation of an answer and two counter-subject
melodies, given the initial subject of the fugue. The musical phrases are then arranged
over time for three voices as shown in table 1.

The process of reviewing the counter-subjects and arranging them in the basic
fugue structure can be performed both by a human composer as well as by a
computer. If an algorithm is to be used, then it must incorporate higher-level concepts
of musical arrangement and coherence; it must have some sort of aesthetic value. This
constitutes a different problem than that of creating melodies; nonetheless, it is a task
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that has also been widely studied and described, as will be seen in the following
section. For the purposes of this paper, we assume that a human performs this
arrangement, based on his personal aesthetics.

Table 1. Basic fugue structure

VOICE PART 1 PART 2 PART 3
Soprano Subject Counter-Subject | Counter-Subject 2
Alto Answer Counter-Subject 1
Bass Subject

3. Literature Survey

As can be expected, researchers have focused on the specifics of music composition
described here. While some study the task of melodic phrase generation, others do so
for issues of musical arrangement. Nonetheless, systems that combine both tasks have
been developed and proven to be of great utility.

3.1 Melody Generation

Most popular systems have focused on generating notes based on stochastic methods,
where each note is produced based on its conditional probability, given its preceding
notes [13,8]. Such probabilities could be modified so that a certain “style” is
encouraged.

Less rigid systems that rely on nonlinear dynamical systems have also been
implemented. These are described as systems of mathematical equations, and display
a behavior found in a large number of systems in nature [1]. The way in which notes
are calculated is through a process of iteration, where the solution to the equations is
calculated and then fed back into the system as an input value for the following
iteration. The generated solutions can be viewed as a set of n points in space; this set
is known as an orbit. Of special interest among composers are chaotic orbits, which
display semi-cyclical behavior. That is, the musical melodies creates seem to “wonder
around” a musical motif but without repeating the same melody.

The systems mentioned above generate melodies from scratch; at most they have
mathematical functions as input. Another approach to the problem consists of
generating the resulting melodies based on a given musical phrase, which acts as an
input. Probably the most successful implementation of such an approach is GenJam
[2], a system that uses genetic algorithms in order to improvise over Jazz melodies.

For these systems, the quality of the produced musical phrase must not be judged
by itself. Rather, the melodic content of a reference phrase is used for fair evaluation.
Applications of these systems include melodic development, thematic bridging, and
harmonization. Burton & Vladimirova [3] give a compilation of musical applications
were genetic algorithms in particular have been used for melody generation.
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The specific problem of counterpoint so/ving’ has been formally stated as a search
problem that aims to use the formal rules of counterpoint composition that have been
defined over time [12]. Nonetheless, further development of the problem or
alternative solutions have not been published lately.

3.2 Arrangement

Artificial Intelligence techniques have been widely used to model compositional tasks
of higher level. Most of the systems seem to use a generator/modifier/selector
approach that was first proposed by Lejaren Hiller during the 1950’s [6]. In this
approach, the output of a musical generator (such as the ones described above) is fed
into the modifier and selector subsystem, which performs melodic development over
the main theme and then arranges the melodies in a suitable way. Jacob calls these
components composer, ear and arranger respectively [8].

The arranger subsystem can be implemented in different ways. It can be a complex
rule-based system, such as David Cope’s EMI [4], which produces a deterministic
behavior. It can also be a looser system that, for example, just organizes the melodies
so that they follow a given contour pattern.

Bruce Jacob’s arranger [8] implements another approach that is widely used in
algorithmic composition: interaction between the system and a human composer.
Jacob’s system uses a Genetic Algorithm that selects possible phrase candidates and
then presents them to the user. Once the user selects the ones it considers most fit, the
algorithm extracts their parameters and employs them in future iterations.

Moroni’s Vox Populi [11] goes even further as this interaction occurs in real time.
The human composer makes use of a graphical interface, where can adjust the
parameters of the Genetic Algorithm as the composition is performed. Alternatively,
he can draw two curves that represent which are represented as variables that guide
the compositional process.

The particular problem of arranging a simple fugue is discussed by Milkie &
Chestnut [10], although it can be said that their project consists of an instantiation of
the more general framework developed by Lejaren Hiller. However, their use of
genetic algorithms is limited only to the generation of the fugue’s subject. In this
respect, the work resented here can be considered both different as well as more
general.

4. Implementation

A system that generates a counterpoint melody was implemented and evaluated. The
system architecture is depicted in figure 1. This system uses a simple genetic
algorithm (SGA) in order to generate a melodic phrase, given a referent melody. In
particular, the input melody can be seen as the fugue subject, and the output melody
as a counter-subject.

!'Some of the literature refers to this task as species counterpoint.
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Fugne Sabject

Conmiter- Subiject
Blelodies

MELODY
GCENERATOR

Fig. 1. System overview

When implementing a Genetic Algorithm (GA) based system it must be
remembered that the system’s success is dependent upon three characteristics: Search
domain, fitness evaluation and input representation [3]. The search domain was
specified in the previous section. In turn, how the latter elements were implemented is
now discussed.

4.1 Melody and Note Representation

Melodies and notes were implemented as two different objects, using an object
oriented programming language (OOP). Both representations are now discussed.
First, however, it must be stated that the representation of a note is very similar to the
one used by Biles [2] in GenJam, with the idea of a feature field borrowed from
Milkie & Chestnut [10]. Similarly, the representation of a melody was borrowed from
the latter.

Notes are characterized by three different attributes: pitch, length and feature. In
the implementation, the pitch corresponds to an integer that represents the number of
semitones between of the first note of the melody scale and the represented note. For
example, if the note has a pitch value of 2 and the scale is C major, then the encoded
note is a D. In particular, as notes were limited to a single octave for the experiment,
the pitch value ranged between 0 and 11.

The length of each note was encoded as an integer, ranging from 0 to 3. A
simplification was made here, as only 4 different lengths could be represented. This
decision was made because we wanted melodies to have a quaver as the shortest note,
given that this was the shortest note found on our input test set. Thus, the note
durations encoded were: half a beat (0), one beat (1), two beats (2) and four beats (3).

Finally, the feature field was used to store extra information about a note. A value
of zero was used to represent a simple note, a value of 1 to represent a silence or rest
(thus eliminating the meaning of the pitch value), and a value of 3 to represent a hold.

Melodies, in turn, have five different parameters. The first one is the key of the
melody. This was encoded using an integer value. In particular, we used the value 0 to
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represent a key of C major, the one used for all the melodies of our test. The second
parameter is the beat of the melody. Here we also used an integer, and represented a
beat of 4/4 with the value 0 for our test.

The melody length, in number of notes, was also stored as an integer value. The
fourth parameter corresponds to the melody fitness, which was an attribute used
specifically by the genetic algorithm. Finally, an array containing the actual notes is
the last element that conforms a melody.

ol T

5%

MELODY NOTE NOTE NOTE
Eey: 0 [C hlajor) Pitch: 4 (E) | Pitch 7 () Pitch: 0]
Eeat: 0 (414 ® Length: 0 Levgth: 0 Lergth: 1
Langth: 6 Feabme: 0 Feanme: 0 | Fenme:n
Score: 0 (Urdawem)

Fig. 2. A melody fragment and its representation

In order to better illustrate what has just been explained, a fragment of a melody
and its representation are presented in figure 2. For each attribute, the store (encoded)
value is shown after its name. The represented value is shown in parenthesis.

4.2 Fitness Evaluation and Crossover

The second element crucial to the performance of the genetic algorithm is the fitness
evaluation. After carefully reviewing the literature, we decided to use the following
function for the implemented system:

fitness = 2weight,. * feature,

where a set of features are evaluated and multiplied against a preset weight. This
scheme is very similar to Schottstaedt’s one of prohibitions and penalties [12], as
some features were derived from his work. However, in order to adapt the rules for
the genetic algorithm, melodies are rewarded when they display a certain feature,
instead of being penalized for containing a prohibition. The set of selected features
and its corresponding weights is presented in table 2.

Table 2. Selected features for fitness evaluation

Feature Weight
Percentage of notes in the same key as the input melody 100
Same length in measures as the input melody 100
Melody ends in a consonant note 50
Melody begins with a consonant note 50
Percentage of intervals smaller than a third 100
Number of repetitions (higher than 2) of a note -25
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Once the fitness was calculated for each member of a generation, a single point
crossover operator was used to create the offspring of a population. The crossover
point was selected at random and corresponded to a particular measure at which the
melodies are divided and then recombined to form two new melodic phrases. Figure 3
shows two sample melodies, and the resulting descendents when they are combined at
the first measure. Note that if the value of zero is chosen as the crossover point, then
the two parent melodies will be carried to the next generation.
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Fig. 3. Crossover at measure 1

By combining at a given measure instead that at a given note (i.e. at the third note),
we could guarantee that the resulting melodies would have the desired length. This, in
turn, guaranteed a minimum fitness on the newly generated population.

Finally, it is important for a genetic algorithm to have a mutation operator in order
to assure that a suboptimal solution is found [5]. A mutation is no more than an
evolution operation performed on an individual of a population. In particular for our
case of musical phrases, mutation consists of a set of musical operations that are be
performed on the original melody. The particular operations consist of transposition
and inversion of a single note, randomly selected. These operators were selected to
manipulate the content of the system and evolve the population in a musically
meaningful way [3].

5. Measuring Performance

A test was carried to measure the quality of the melodies produced by the described
system. In this section we describe how the test was performed, and then present the
results found. Finally, these results are discussed.

5.1 Test Results

The genetic algorithm described in the previous section was run several times, using
two different input melodies. Both of the input melodies were four measures long,
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with a beat of 4/4, and in the key of C major. This means that the output of the system
was expected to present this same set of characteristics. Given the data representation
selected, the fitness function and the crossover operator, all resulting melodies
displayed these characteristics.

For the genetic algorithm, a population size of 50 individuals was used, and 100
generations were produced. These values were determined experimentally, and
provided the best average fitness of the population.

Once the output melodies were collected, they were fed as the input of a MIDI
sequencer. After this, they were played alongside a faded version of the input melody
used for generating them. A sample melody, generated during the test, along with the
input used for creating it are shown in figure 4.

Fig. 4. Sample melody generated by the genetic algorithm

After collecting the results, the set of selected melodies was presented to an
expert, who was then asked to grade them according to how well the generated
melody could act as a fugue counter-subject for the input melody. That is, the
generated melody was not evaluated by itself, but with respect to the system’s input.
A scale of 1 to 5 was used for this evaluation, were a value of 5 corresponded to the
output melody being a good counter-subject for the fugue’s main subject. A value of 1
represented no melodic relation between the two melodies.

The average grade given by the expert was 2.94. In addition, table 3 summarizes
the percentage of melodies that were given each one of the five possible grades.

Table 3. Summary of results

GRADE Percentage of
Melodies

1 11.1%

2 16.7%

3 38.9%

4 33.3%

5 0%

Even though these figures might seem somewhat low at first sight, it must be stated
that a grade of 5 corresponded to the melody being the work a musical expert (human
or machine).

One final consideration that must be taken into account when evaluating the results
of a melody generation system is that the generating algorithm must not converge
upon a single solution [11]. Rather the solutions must display a set of recognizable
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characteristics without being a mere repletion of each other. There is not just one
possible solution to the task of counterpoint generation.

The system tested displayed this desired behavior. In particular, no two melodies
produced during the test are identical. This can be explained in part because the
genetic algorithm was run for a fixed number of generations, and the algorithm
doesn’t converge upon a set of solutions at a fixed rate. That is, the average fitness of
the final population is not necessarily the same for two repetitions of the same
experiment.

This is a particularly interesting result, as this characteristic might not always holds
true for counterpoint-solving algorithms based on other search techniques. Given this,
genetic algorithms prove to be a viable technique for solving Schottstaedt’s original
formulation of the problem. Moreover, they might be a more suitable technique than
other search algorithms, not only from a technical standpoint but also from a musical
one. However, further testing and comparison must be done before making such a
powerful claim.

5.2 Discussion

The results presented here are encouraging and promising. However, the system is far
from being perfect; moreover, it’s performance is not good enough to satisfy the
needs of an average composer’. Further work and testing are both needed and
encouraged. In anticipation of this, in this section we present a discussion of what we
think are some of the necessary steps that must be taken in order to improve the
results.

The first step needed in order to achieve better results consists of using a more
elaborated fitness function for the genetic algorithm. By this we mean that a more
complete set of features must be developed. Schottstaedt’s set of rules (or penalties)
provides a thorough compilation of the most important counterpoint rules, along with
a measure of relative importance (their penalty). Other sources might be found in the
musical literature.

This task shouldn’t be very difficult, as it is highly localized; however it is
important to state here another related problem, namely, that of data representation.
The melody representation chosen is very useful and meaningful; nonetheless, the
algorithm might benefit from a more detailed description.

Here a distinction must be made. The task of augmenting the set of features used
by the algorithm relates directly to the problem at a higher level. On the other hand,
that of using a more detailed data representation relates to the particular
implementation. Nonetheless, with this distinction in mind we still find it useful to
talk about the issue of data representation.

In particular, we think that some important data is lost when a melody is
represented as a set of notes, grouped under a set of common characteristics. A more
detailed description should make explicit the concepts of both measure and beat. Once
these concepts are explicit, the set of operations that are performed on the population
(such as crossover and mutation) will be much more efficient. Moreover,

2 Species counterpoint exercises are not expected to produce great music.
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implementing a more complete fitness evaluation function should become an easier
task. This explains the importance of mentioning this particular implementation issue.

Our final recommendation pertains to the task of generating the initial population
of the genetic algorithm. This task, we see, can be carried in two different ways. For
our test system we decided to create the initial population of musical phrases using a
random number generator, in accordance with most implementations of SGAs. In this
way, the search space isn’t constrained.

However, the initial population can also be created by using a stochastic note
generator, such as the one proposed by Jacob [8]. This imposes a constraint on the
search space; but that, in particular, might be a desired effect. By using a stochastic
model for the creation of the initial population, a minimum level of fitness (and thus
quality of the system) can be guaranteed. Moreover, some of the features that we used
in our fitness evaluation can be eliminated. In particular, those that assess only to the
individual being evaluated. If these features are removed, then the evaluation function
will be comprised of a set of rules that refer only to the relation between the given
individual and the referent melody. This can be then viewed as a cleaner evaluation,
as it concentrates only on counterpoint specific features, rather than on those that
relate both to the counterpoint task and the structural quality of the individual.
However, it must be clear that what has just been described is a tradeoff between the
clearness of the problem definition and modeling, and the completeness of the search
space. It should be clear by this point that we decided to have a complete search
space.

6. Conclusion

A basic algorithmic composition system has been proposed. The system finds a
suitable set of melodies to be arranged in a fugue, given the fugue’s main subject.
Particular attention and effort has been put into the design of the melody generator,
which uses a genetic algorithm in order to evolve generations of candidate solutions
for the problem.

A test was carried to measure the quality of the results produced by the described
system, and the results were discussed. In particular, we were very pleased with the
results produced by one of the two test sets. Nonetheless, the overall results are also
encouraging.

Future work and some specific issues were discussed. Some of these issues relate
to the particular implementation of the system, while others relate to the problem
specification. Both are considered important. Accordingly, future work is strongly
encouraged.

Finally, it must be stated that the use of genetic algorithms has proven to be a
viable technique for solving the problem of automatic counterpoint melody
generation. Moreover, given some characteristics of the problem, such as the size of
the search space and the existence of multiple solutions within this space, the use of a
heuristic search method, and genetic algorithms in particular, seems to be a well
suited mechanism for achieving a satisfactory solution.



106 Andres Garay Acevedo
References
1. Alpern, A. 1995. “Techniques for Algorithmic Composition of Music.” On the web:

11.

12.

13.

14.

http://hamp.hampshire.edu/~adaF92/algocomp/algocomp95.html

Biles, J. 1994. “GenJam: A Genetic Algorithm for Generating Jazz Solos.” Proceedings of
the 1994 International Computer Music Conference. San Francisco: International
Computer Music Association.

Burton, A., and Vladimirova, T. 1999. “Generation of Musical Sequences with Genetic
Techniques.” Computer Music Journal 23(4): 59-73.

Cope, D. 1992. “Computer Modeling of Musical Intelligence in EML.” Computer Music
Journal 16(2): 69-83.

Goldberg, D. 2000. “The Design of Innovation: Lessons from Genetic Algorithms,
Lessons for the Real World.” Technological Forecasting and Social Change 64: 7-12.
Hiller, L. 1981. “Composing with computers: A progress report.” Computer Music
Journal 5(4): 7-21.

Horner, A. and Goldberg, D. 1991. “Genetic Algorithms and Computer-Assisted Music
Composition.” Proceedings of the 1991 International Conference on Genetic Algorithms.
San Mateo: International Society for Genetic Algorithms.

Jacob, B. 1995. “Composing with Genetic Algorithms.” Proceedings of the 1995
International Computer Music Conference. San Francisco: International Computer Music
Association.

Jacob, B. 1996. “Algorithmic Composition as a Model of Creativity.” Organised Sound
1(3).

Milkie, E., and Chestnut J. 2001. “Fugue Generation with Genetic Algorithms”. On the
web: http://www.cs.cornell.edu/boom/2001/Milkie

Moroni, A. et al. 2000. “Vox Populi: An Interactive Evolutionary System for Algorithmic
Music Composition.” Leonardo Music Journal 10: 49-54.

Schottstaedt, W. 1989. “Automatic Counterpoint.” Current Directions in Computer Music,
pp. 199-213. Cambridge, Massachusetts: MIT Press.

Supper, M. 2001. “A Few Remarks on Algorithmic Composition.” Computer Music
Journal 25(1): 48-53.

Temperley D., and Sleator D. 1999. “Modeling Meter and Harmony: A Preference-Rule
Approach.” Computer Music Journal 23(1): 10-27.



Harmonizations of Time with Non Periodic
Ordered Structures in Discrete Geometry and
Astronomy

Juan Garcia Escudero

Facultad de Ciencias, Universidad de Oviedo,
33007 Oviedo, Spain
jjge@pinon.ccu.uniovi.es

Abstract. Non periodic ordered tilings can be used for the generation
of discrete structures in the time and frequency domains. The Fourier
spectrum of impulse distributions ordered according with certain types
of aperiodic ordered temporal sequences described by Lindenmayer sys-
tems shows a discrete part . In order to appy these ideas the main tools
belong to discrete geometry and number theory. These techniques pro-
vide a connection between rhythms and harmonic fields which may have
a natural phenomena basis when observational data of certain types of
variable stars are analyzed. The pulsation of some semiregular and delta
scuti stars is reflected in their light curves which can be modelled by
means of sinusoidal sequences related with the golden number.

...Comment le monde doit se replier sur lui-méme,se redoubler, se réfléchir ou
s’ enchainer pour que les choses puissent se ressembler... (Michel Foucault)

1 Introduction

One of the last trends in XX century is spectralism which uses harmonies derived
from overtone series of natural sounds. The primary source of the techniques
considered in this paper is not the spectrum of sounds but of temporal sequences.
The main motivation lies in a series of recent works, where I have explored
relations between aperiodic but ordered temporal sequences, harmonic fields
arising from the Fourier analysis of such sequences and of instrumental sounds,
and sounds synthesized starting from the dynamic spectra appearing in the
analysis.

The basic structures are related with quasicrystals which are a new type
of alloys discovered twenty years ago exhibiting a type of order different from
either crystals or amorphous materials. The structures, which lie somewhere
between periodicity and randomness, have been described by the author with
the help of deterministic and stochastic Lindenmayer systems. In 2D and 3D the
recursive structure of the geometries is represented in terms of bracketed word
sequences [4].

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 107-118, 2004.
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Time is structured with 1D geometric sequences generating aperiodic ordered
rhythms. The use of number theory shows that some of them are transparent
in the sense that their Fourier spectra have a discrete component and provide
the pairs intensity-pitch. The resulting harmony is an extension of the classical
harmony which is based on the spectra of periodic rhythms. Due to the lack of
translational symmetry, the temporal spectra are always inharmonic. The cen-
tral frequencies in additive synthesis of filtered noises have been obtained from
the basic temporal and instrumental spectra. Their amplitudes evolve according
to successive iterations previous to the amplitudes stabilization. The bandwidths
in [5] have been introduced according to perceptual criteria, but 1D non periodic
ordered tilings can show also continuous components in their Fourier transform
. In other works spectra of instrumental or vocal sounds are part of autonomous
harmonic fields or in interaction with those corresponding to the spectra arising
in the temporal structures. The scaling factors of the aperiodic ordered 1D se-
quences are algebraic integers : roots of monic (the leading coefficient is equal to
1) polynomials with integer coefficients. Certain connections with observational
data in astronomy may also be established and the time can be structured in a
natural phenomena basis.

2 L-systems for Quasiperiodic Tilings and Their Time
and Frequency Representations

An approach to continuity can be obtained in computer music compositions due
to the high accuracy of the medium. It has been also the basis of instrumental
works by authors like Brian Ferneyhough: the pitches, dynamics and rhythms are
chosen from a parametric space as continuous as possible from a perceptual point
of view. Local realizations are, except in some cases like glissandi or dynamic
changes, essentialy discrete. Several authors have looked in the past for discrete
time structures that would be related to organizations of pitch structures [2]. By
decreasing the duration of a series of impulses periodicaly distributed in time,
Stockhausen pointed out how the same basic process is behind our perception
of duration and pitch [16] . Longer durations define temporal scales related with
the form and its articulations.

A possible way to structure the time is by means of non periodic ordered
sequences which can be described algebraically in terms of Lindenmayer systems.
A OL-system [15] is a triple G = {X, 7, 2} where X' is an alphabet, r is a finite
substitution on X' into the set of subsets of X*, and {2 is the axiom. G is called
a DOL-system if #(r(x)) = 1,for every z € X.

Consider the alphabet X' = {a, b}, the production rules:

a — abaa, b — aab (1)
and the axiom a. The language consists in the words a, abaa,

abaaaababaaabaa, ... If we associate to a and b temporal segments (rhythmic
units) of lengths l,,l, with ,/l, = (o — 1)/2, where « is the highest root of



Harmonizations of Time with Non Periodic Ordered Structures 109

the polynomial 22 — 42 + 1, we get a selfsimilar sequence with scaling factor a.
Although « is not rational, rational approximants can be obtained for the basic
rhythmic units by using the recursion relations

Anp+4+1 = 3an + bna bn-‘rl = 2an + bn (2)

Impulse distributions are now placed on the points separating consecutive
cells. This is represented by the function

p(t) = >k 0(t = tr) 3)

When the points t; belong to a periodic lattice then the spectrum obtained
is the familiar overtone series, with all the frequencies having the same intensity.
In our case the duration t,, of the temporal sequence after iterating n times the
production rules to the axiom a satisfies

tn+1 = 4tn —tp1 (4)

and initial conditions tg = l,, t1 = 3l, + l. The frequencies forming the discrete
part of the Fourier transform of impulses distributions following the sequence
defined by eq.1 have the form :

w = pv1 + qu2 (5)

where p and ¢ are arbitrary integers and v; = (o — 1)/(a+ 1), vo = 2/(a + 1).
If ¢(n) denotes the number of impulses the Fourier transform of p(t) is

lim (2) > exp(2ritnw) (6)

n—oo C

and the recursion relations for the Fourier amplitudes are

Fri1 = Fo(1 + exp(ithw) + exp(2it,w) + exp(i(3t, — tn_1)w))— (1)
Fn,1€$p(i(3tn - tnfl)w)

Four iterations are needed in order to stabilize the quotient between the
amplitudes and the number of impulses. The static spectrum is represented in
Fig.1. Although the spectrum is a dense set, above a certain amplitude thereshold
the number of frequencies which are lower than a given one is finite. The static
spectra contains pitches separated in the frequency space by distances of two
lengths. The first pitches of a spectrum with this property are:

{1,0,58, f,—0.95},{2,0,115,pp, —1.7},{2,1, 158, f f,0.7},

{3,1,215, f f,—0.3},{4,1,273, mf, —1.2},

{4,2,315,mf,1.3},{5,2,373, f f,0.4},{6,2,431, f f,—0.5},

where in each quadruple we use the notation:

{p, q, frequency(H z),intensity, phase}, and p, q are the integers in eq.5.

For generic substitutional sequences the Fourier spectrum is a sum of discrete,
continuous and singularly continuous (its derivative vanishes almost everywhere)



110 Juan Garcia Escudero

H‘\“M\HMHM L .

[

Fig. 1. Plot of the normalized Fourier amplitudes for the ab-system.

eq

components. When the scaling factor is a Pisot-Vijayaraghavan number, namely,
an algebraic integer greater than one with all its conjugates (the remaining roots
of its minimal polynomial) strictly less than one in modulus, then there is, up to
possible extinctions, a discrete component in the Fourier transform [1]. This is
the case for the sequences considered above. In [7] continuous approaches (which
does not mean a continuos component) to the spectrum have been given for the
system with production rules r : {a® —— b',at — %00 — alc® bl —s
cta®, @ — db? ¢t — bld, d — Pct}, with 1, = sin[r/8];1, = sin[27/8];1. =
sin[3m/8];lg = sin]dmw/8]. In fact the substitution gives two types of sequences
depending on which iteration level one considers. It is possible to construct sub-
stitution rules related with one level r : {a — ac,c — ccac} such that the
inflation factor is a Pisot number and then, up to extinctions, there is a discrete
component. A substitution rule with a non Pisot scaling factor and hence no
discrete component in the Fourier transform is r : {a — acca, ¢ — ccaccacc}.
Figs.2,3 show a plot of the normalized amplitudes corresponding to two succes-
sive words with lengths 56 and 384. A progressive but irregular emergence of
sharp peaks with well defined positions can be seen as in the non-Pisot structure
studied in [11].

The 1D tilings discussed are the basis for the construction of 2D aperiodic
geometries which may formalize harmonic fields progressions. In [9] several pla-
nar tilings with eight-fold symmetry have been introduced. They are constructed
by means of a substitution process and the complexity is obtained by iteration
of simple rules as in other scientific fields. The method can be applied because
each prototile can be subdivided into smaller rotated copies of themselves and the
other prototiles. A biological motivation is behind tiling growth: many cell divi-
sions in multicellular organisms occur at the same time. The recursive structure
of the figures is captured in terms of word sequences in bracketed Lindenmayer
systems where productions are applied in parallel and simultaneously replace all
the letters in a given word.
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Fig. 2. Plot of the normalized Fourier amplitudes for the non-Pisot ac-system
with 56 impulses.
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Fig. 3. Plot of the normalized Fourier amplitudes for 384 impulses.

For the substitution tilings derived in [9] the prototile edges A, B,C, D, E,| F
have respective lengths 2¢q, 1, 2¢a, 2¢1¢2, 2¢2¢3, 2¢3, with ¢, = cos(vm/8). They
are selfsimilar with the Pisot-Vijayaraghavan inflation factor 1 + 2co, high-
est root of x2 — 2z — 1. The letters um, Bm,Ym,Om represent the prototiles
T(B,B,A),T(B,B,C), T(D,E,C), T(B, F, B) respectively, where T'(X,Y, Z) is
a triangular tile with edges X, Y, Z placed anticlockwise. Letters of type ¢t and ¢
represent mirror images. The prototiles of type ¢ are marked with a symbol o in
Fig.4. The alphabet is

Y= {amaﬁmv%na5maam75mv§m75ma(7)} (8)

with m € Zi6 (Z,, denotes the set of integers module m). The tile T(X,Y, Z)
with the edge Z placed on the positive x-axis corresponds to t; and the mirror
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Fig. 4. The substitution rules for the prototiles.

reflection through an axis perpendicular to Z gives t1. The oriented tiles ¢; and
t; are obtained by a rotation of 7(i — 1)/8 through the left most vertex.

Every element belonging to the alphabet representing a tile can be used as
axiom. The set of production rules is (Fig.4):

QA — (6m+76m+9ﬁm+1ﬁm+9am) " _
Bm [ — (6m+6ém+14ﬁm&m+9am+15m+106m+6)

TYm —— (am+7§mgm+87~m6m) (9)
O — (am+7ﬁm6m+12ﬁm+10§m+2)

) —)

(—(

In the word ((Em Bm+80m) (YmYm+6)), if two letters follow one another inside
a bracket, the corresponding oriented triangles are glued face to face in a unique
way. The oriented trapezoid (B, Bm+80m ) is then glued also face to face with the
oriented triangle (7,,¥m+6) disregarding their internal composition and again the
prescription is unique. A part of the infinite planar tiling can be seen in Fig.5.

This type of word sequences , which were introduced for the description
of Penrose patterns [4], have been used in the formal constructions since [3].
The prototiles may have also a correspondence in terms of elementary harmonic
fields [6] . They can be derived from the prototile edges, their inflated versions
or the spectra associated with the edge substitution rules (see eq.10). Local
periodicities can give , in some cases, chords close to those classified by the
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classical harmony and the words describing the tiling growth produce a hierarchy
of chord sequences.

NN R SESE

Fig.5. A fragment of the infinite octagonal tiling with four prototiles.

Different species of planar patterns ,related with number twelve, have been
generated in [8] . The prototile edges are A = 51, B = $9,C = s3,D = 54, F =
s5, F = sg. where s; = sin(ln/12). An arrow is placed on all the edges except
F. For a given prototile their edges are labelled with 0,1 depending on whether
the arrow orientation with respect to the prototile interior is anticlockwise or
clockwise respectively. The substitution rules X —— ¢[X] are :

¢[A%] = B ¢[B"] = D°F
¢[C°] = E'E°C! ¢[D°] = D'FD' B (10)
¢[EY] = A'COE'E°C" ¢[F| = B'D°FD'B°

and ¢(L") = Mir(t(¢(L*+1))) where Mir denotes the mirror reflection of a word
1 € Z5 and the map t increases in one unit the index.

In what follows we use the rhythmic notation of Patchwork-Open Music. The
list (4(1111)3(111)) contains two sub-lists each one representing a bar,
the number before each sub-list denotes the number of pulsations and negative
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numbers indicate rests. For instance 4( -2 1 1 ) denotes a half-note rest followed
by two quarter-notes . In Yod , a work for six percussionists and computer, the
prototile edges substitution rules given in eq.10 play a major role. It is possible
to define also rational approximants for the temporal segments s; along the lines
of eq.2. The last section of Yod begins with the following rhythmic pattern in
the first bar:
E:(4(6(1-21-2)6(-11121)6(-312)6(-11-21-1)),
C:(4(11(1-31-31-2)11(1-21-31-3)11(11-21-31-2)11(-11-2
11-31-1)),
F:(4(11(1-11-31-4)11(1-31-31-2)11(-21-31-11-2)11(-21
31-11-2)),
A:(4(11(1-31-21-21)11(-31-211-3)11(1-21-31-21)11(-21
-31-31)),
D:(4(16(1-11-21-31-21-11-1)16(-11-31-21-11-21-2)16(-1
1-21-31-21-11-11)16(-21-21-11-11-21-3)),
B: (4(16(1-81-6)16(-11-71-6)16(-11-41-81)16(-71-8)).
The letter preceding each sequence is the axiom that generates it. Observe
that there are two independent subsets {A, E, C}, {B, D, F'} in eq.6 which trans-
form into themselves and therefore every sequence has only three rhythmic units.
They are constructed in such a way that the only whole coincidences are at the
begining and at the end of the section.

3 Pulsations of Variable Stars and Substitutional
Sequences

In addition to the aperiodic ordered structures which have a mathematical mo-
tivation, spectra of natural phenomena in astronomy can be used as part of
the pitch and rhythmic organizations. Stellar pulsations may be irregular, semi-
regular or periodic. In this section I consider stars with light curve variations
related with the structures previously discussed. Semiregular stars like UW Her-
culis and some Delta Scuti stars have a multimode pulsation with a light curve
that can be modelled by concatenation of sinusoidal fragments following word se-
quences in formal grammars. The best known example of a selfsimilar quasiperi-
odic sequence is the Fibonacci sequence. It is related with the ubiquitous golden
number . Lindenmayer systems can be used in order to describe the Fibonacci se-
quences . The alphabet is {L, S}, the production rules r : {L —— LS, S —— L}
and the axiom L. The sequence consists in the words L, LS, LSL, LSLLS, ....
A 1D quasiperiodic geometric structure can be obtained if L and S repre-
sent two segments with a ratio equals the golden number 7. The sequence is
deterministic because only one word is allowed with a given length. The Fi-
bonacci numbers F(n) can be defined with the help of the recurrence relation
F(n+2)=F(n+1)+ F(n),F(0) = F(1) = 1. By iterating this relation we get
the sequence 1,1,2,3,5,8,13,21... The quotient of two succesive Fibonacci num-
bers approaches the golden number when n increases. The following rhythmic
sequence corresponds to a subdivision of a segment L = 34 :



Harmonizations of Time with Non Periodic Ordered Structures 115

1
S
S~—
ot
—
]
ot
N
ot
—
1
ot
N
ot
—
1
ot
S~—
ot
—
1
—_
—_
1
w
N

(-5)
31-1)5(-5)5(-11-3)5(-5)5(-5
31-1)5(-5)5(-11-3)5(-41)5(-5)))

)

5
( | <
5(-31-1)5(-31-1)5(-11-3)5(-11-21)5(-5
)

A~ =
—_
1
N —
—_
1

The sequences do not have translational symmetry: they can not be derived,
independently of its length, by translation of a unique subsequence. They show
a certain amount of redundancy because, when the infinite word is considered,
any block of consecutive symbols can be found also at some place in the word.
These properties have their geometric correspondences also in the infinite planar
tilings discussed (Fig.5): they can not be generated by translation of a single
geometric configuration and every patch of tiles occurs at some place in the
tiling. If delta functions are ordered according with this rhythmic sequences
then it is possible to get recursion relations along the lines of eq.. The spectrum
has a discrete component which is also a dense set. The order that lies in the
temporal sequence is reflected in the frequency distribution and we can extract
a set of partials with distances of two lengths in a golden ratio, although the
words obtained in the frequency space do not belong to the grammar generating
the rhythmic structures.

A different approach is suggested by a method recently introduced in astron-
omy [10]. The light curve of the Delta Scuti star V346 Orionis can be modelled
with a curve constructed by concatenation of two sinusoidal fragments with two
lengths in a golden ratio. For the observations taken on the night of 4 November
2001 at the 1.52 telescope in Loiano (Italy) [13], the temporal segments have been
chosen by matching with the empirical dataset. In Fig.6 are plotted differential
stellar magnitudes of V346 Ori relative to the star HD 35351 (see [13]). In the
abscise the modified Julian days correspond to MHJD=(HJD-2452218)x10° . For
the generation of the artificial light curve, represented as a continuous curve in
Fig.6 , the axiom is SL and the derivation corresponds to r3(SL) = LSLLSLLS.

The Fourier spectrum of an artificial light curve with two sinusoidal fragments
with lengths L = F(10) = 89 and S = F(9) = 55 units following a Fibonacci
sequence can be seen in Fig.7 The analysis corresponds to the word r!! with
144 letters (compare [10) for the analysis corresponding to the word with 89
letters ). The periods corresponding to the peaks with highest amplitudes in
Fig.7 have 123 and 76 units, a factor of 3 — 7 in relation with the durations of
the sinusoidal fragments. The presence of sharp peaks is probably due to the
fact that the golden number is a Pisot-Vijayaraghavan number ( in this case the
minimal polynomial isz? —x — 1) . In [12] it is shown that any Pisot substitution
dynamical system on two symbols has pure discrete spectrum. The frequencies
of the Fourier spectrum of Fibonacci sequences belong to a dense set which
consists of the linear combinations with integer coefficients of two fundamental
frequencies: f = mjwi +mows, where wy and ws are in a golden ratio and my, mo
are integers. The spectrum stabilizes when the iteration level is increased. The
sharp peaks appear in the analysis when the word length is long enough. For
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50000 55000 60000 65000 70000

Fig. 6. V346 Orionis light curve and the artificial curve corresponding to the
sequence containing the first seven letters of the word r3(SL).

shorter words the peaks appear with a certain bandwidth and this fact can be
used in order to get dynamic spectra for direct synthesis of sound by appropriate
scaling the basic units.

The semiregular star UW Herculis can be studied with the help of models
based on stochastic sinusoidal sequences. A stochastic 0L-system is a 4-tuple
G = {X, P, (2,7} where P is a set of productions r; and 7 : P — (0,1] is a
probability distribution. We define a Fibonacci stochastic L-system with P =
{ri,r2} and ry : {L — LS,S +— L},ro : {L — SL,S —— L}. The Fourier
spectrum of artificial data generated by following the word sequences of this
system contains peaks with bandwidths. When the amplitudes are increased at
certain positions according with the observations, some of the pitches of the
spectrum with significant amplitudes are ( the frequency in Hz and the intensity
are specified in each pair)

{53, f},{124,mf},{178, f},{231, f}, {267, mf}, {320, m [},

{373, f}, {427, mf}, {498, mf}, {551, mf}, {605,  }, {960, mp},

which corresponds to a certain period of time. It has been part of the struc-
tural models considered in Yod. Dynamic spectra can be generated by including
different periods of time .

4 Concluding Remarks

In this paper specific techniques with a basis in number theory, geometry and
astronomy have been discussed in an attempt to implement, in a different con-
text, formalized mechanisms founded on the mathematics of aperiodic ordered
systems. A common intention is the computation of static and dynamic spec-
tra of temporal sequences having a mathematical or physical motivation. From
the compositional point of view the emphasis is shifted from the spectrum of
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freg

Fig. 7. Normalized Fourier amplitudes for the curve with sinusoidal fragments
following a Fibonacci sequence with 144 symbols.

sounds to the inner structure of time. The combination of spectra computed
from temporal sequences with other techniques like granular synthesis [14] can
be a powerful tool for experimentation in sound design. The temporal sequences
and their spectra have been used as part of the structural basis of several works
like Invertida Raiz for nine instrumentalists and computer , where the timbric
integrations between the electronic and instrumental parts are produced with hy-
brid synthesis techniques, or Ad Matutinum for mixed choir where the harmonic
fields are generated from the spectra of both vowels and temporal structures. The
relationship at a perceptual level between the generated non periodic ordered
rhythms and their associated spectra must be explored in a deeper level in order
to expand our tools for algorithmic composition. The deterministic sequences
are selfsimilar although,when they are included in a compositional context, this
property is usually distorted at some level in the hierarchy . The analysis of
deterministic and stochastic aperiodic ordered sequences can provide a unified
basis from the point of view of the formalization process because it connects
rhythmic, dynamic, harmonic and timbric striated spaces . Although without
any type of a priori aesthetic consistency in the final results, the construction
of the reference space discussed in this work opens new expression possibilities
that can not be anticipated by intuitive explorations.
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Abstract. In this paper, we present an approach for musical artist recommenda-
tion based on Self-Organizing Maps (SOMs) of artist reviews from Amazon
web site. The Amazon reviews for the artists are obtained using the Amazon
web service interface and stored in the form of textual documents that form the
basis for the formation of the SOMs. The idea is to spatially organize these tex-
tual documents wherein similar documents are located nearby. We make an at-
tempt to exploit the similarities between different artist reviews to provide in-
sights into similar artists that can be used in a recommendation service. We
introduce the concept of a modified weighting scheme for text mining in the
musical domain and demonstrate its role in improving the quality of the rec-
ommendations. Finally, we present results for a list of around 400 musical art-
ists and validate them using recommendations from a popular recommendation
service.

1 Introduction

Music similarity perception plays an important role in recommendation services for
musical information. Given the huge amount of musical data available online, there is
an increasing demand to provide quality-enriched services to allow access and browse
musical content over the web. Various services are being offered by online music rec-
ommendation systems that use different approaches to compute music similarities [1],
[2]. We present here in this paper an approach for musical artist recommendations us-
ing the album reviews for the artists available from the Amazon web site [3]. The ba-
sic idea of our approach is to spatially organize these reviews that are in the form of
textual documents using an unsupervised learning algorithm called Self-Organizing
Maps [4] and thus be able to give recommendations for similar artists by making use
of the model built by the algorithm.

An approach to musical artist recommendations based on cultural metadata has
been presented in [5], [6]. A comparison of audio-based music similarity measures in
a peer-to-peer setting has been made in [7]. The use of SOMs in the field of text min-
ing has been reported in [8], [9] and the WEBSOM project [10]. SOMs have also
been used in the field of Music Information Retrieval for automatic analysis and or-
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ganization of musical archives based on the audio content [11], [12] and in the SOM-
enhanced JukeBox Music Digital Library project [13]. In this paper we investigate the
use of SOMs for artist recommendations not based on the content-based audio analy-
sis but by relying on textual information available in the web.

1.1 Amazon Web Service

The online shopping mall Amazon has made its products available through an inter-
face [14] based on web service standards [15]. Using this interface, one is able to re-
trieve product information like artists/musicians, authors, ASIN and ISBN directly
from the Amazon servers.

1.2 Self-Organizing Maps

The Self-Organizing Map (SOM) is an unsupervised learning algorithm used to visu-
alize and interpret large high-dimensional data sets. The map consists of a regular grid
of processing units called “neurons”. Each unit is associated with a model of some
high dimensional observation represented by a feature vector. The map attempts to
represent all the available observations with optimal accuracy using a restricted set of
models. Map units that lie nearby on the grid are called neighbors. After the forma-
tion of a map for a particular data set, the model vectors are arranged in such a man-
ner that nearby map units represents similar kind of data and distant map units repre-
sent different kinds of data. The reader is referred to [4] for a detailed description on
this subject.

2 Self-Organizing Maps of Amazon Reviews

2.1 Textual Data Mining

The album reviews for artists can be accessed from the Amazon site using the Ama-
zon Web Service interface [14] that is available as a standard development kit. Every
artist can then be represented as a collection of his/her album reviews. The interface
provides facilities to query a broad range of products from the Amazon site. The que-
ries can be submitted either as a web service SOAP [15] message or using XML [16]
over HTTP [16]. The latter uses URIs (Uniform Resource Indicators) with specific
name/value pairs to invoke methods and processes within Amazon's Web Services
framework. The returned response, which is a SOAP message in the former case and
a well-formed XML document in the latter case, contains the complete product infor-
mation.

The literature on Information Retrieval [17] provides techniques to preprocess and
represent textual documents for mining operations. Preprocessing techniques include
stripping unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.)
and removing common stop words (e.g. a, the, of, etc.). The documents are repre-
sented in the form of a bag-of-words where each document is considered as a point
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(or vector) in an n-dimensional Euclidean space where each dimension corresponds to
.th
a word (term) of the vocabulary. The i component d; of the document vector ex-

presses the number of times the word with index i occurs in the document, or a func-
tion of it. Furthermore, each word can be assigned a weight signifying its importance.
Commonly used weighting strategy is the tf * idf (term frequency — inverted docu-
ment frequency) scheme [18], where tf stands for term frequency within the docu-
ment, and idf stands for the inverse of the number of documents in which the term ap-
pears. The scheme is based on the notion that a word that occurs frequently in the
document but rarely in the rest of the collection is given more importance. A variant
of the general tf * idf scheme that assigns a weight to every word is given by

wij = tfjj *idfj = tfj; * logp (N/ dfy) (1)

where,

. . . .th . .th . .
Wij is the tf-idf weight for the i  word in j  document in a collection of N docu-
ments,

... .th . .th
tfij is the term frequency of the i~ word in the j document and

. . . .th .
idfj = logp (N/dfj) is the inverse document frequency of the i word over the entire
collection.

2.2 Modified Weighting Scheme for Text Mining in the Musical Domain

The tf * idf weighting scheme described above does not take into consideration any
domain knowledge to determine the importance of a word. The words are given im-
portance only based on the frequencies of their occurrence in the document as well as
the collection. But when trying to find similarities between two documents in a musi-
cal context, it is desirable to exploit any domain knowledge that is inherently present
in the documents. We propose one such mechanism to accomplish this by introducing
the concept of a modified weighting scheme in the musical domain or context.

The album reviews for artists that are in plain English contain a few words that are
more relevant and ought to be given more importance in the musical context. For ex-
ample, consider an album review for a popular rap artist “Eminem” from the Amazon
web site that says,

“...This is Eminem before he became the hottest rapper on Earth, when he was a
lot more funny and creative. There are only like 3 songs that I don't like. The beats
are just ok, but he makes up for it with his witty lyrics and tight flow. If you're into
rap, you'll like it...”

Words like “rap” in the above example definitely say a lot about the artist being a
rap artist and thus deserve more importance when the above document is represented.
Eventually, one would like to find similarities between documents with words like the
one described above being given more importance in comparison to other words oc-
curring in the English language. Therefore, in addition to the weighting importance
given to a word by the tf *idf scheme, it would be worthwhile to increase the weight
of a word by a certain factor if it is pertaining to the musical domain. A few sample
words that deserve more attention in a musical context are samba, rap, hip-hop,
metal, instrumental. This would allow one to find similarities between documents not
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only by the occurrence frequencies of the words in them but also based on the musical
importance of the words. Coming up with such a list of musical words, also plays an
important role in the quality of the recommendations. We came up with such a word
list of 324 from the genre taxonomies in [2]. The quality of document representation
and thereby the results of the recommendations would definitely be increased if this
modified importance weighting were incorporated into the system. The modified
weighting scheme gives rise to a new weight for musical words that is given by

whij =t idfT = o7 * logy (N/AE™) * a 2

where the superscript m indicates words belonging to the musical context and a is the
weighting increment.

2.3 Map Formation

The preprocessed textual documents represented in the form of n-dimensional vectors
can be used to train a Self-Organizing Map in an unsupervised way. The learning
starts with a set of reference vectors also called the model vectors that are the actual
map units of the network. As the learning proceeds, the model vectors gradually
change or arrange themselves so as to approximate the input data space. The final ar-
rangement is such that the model vectors that are nearby are similar to each other. The
model vectors are usually constrained to a two-dimensional regular grid, and by virtue
of the learning algorithm, follow the distribution of the data in a nonlinear fashion.
The model vectors are fitted using a sequential regression process. Given a sample

vector x(t) at iteration step t the model vector m;(t) with index i is adapted as follows:

my(t + 1) = m(t) + heg ADIX(E) - my()], 3)

where the index of the “winner” model, ¢ for the current sample is identified by the
condition,

Vi, X)) — me(®)]] < [x(t) — mt)|l. )

hex),i(t) is called the neighborhood function, which acts as a smoothing kernel over

the grid, centered at the “winner” model m.(t) of the current data sample. The
neighborhood function is a decreasing function of the distance between the ith and cth
nodes on the map grid. The regression is usually reiterated over all the available sam-
ples. Thus, with this unsupervised learning algorithm we can spatially arrange all the
documents i.e. the album reviews of all the artists, resulting in a topological ordering
of the artists. In addition to this, the SOM algorithm also obtains a clustering of the
data onto the model vectors wherein the artists present in a particular cluster are simi-
lar to each other. In Fig. 1, if we consider map unit A, the artists in itself and its
neighboring units show similarities.
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Fig. 1. A 7 * 7 SOM for the artist reviews with a hexagonal grid. Artists in map unit 4 are more
similar to artists in nearby units like B, C or D than in far away units like E or F, which is by
virtue of the self-organization of the map due to the learning algorithm

3 Experiments and Results

3.1 SOMs of the Whitman Artist List

We implemented the SOM based approach for artist recommendations described in
this paper for the Whitman musical artist list [6] to build an SOM model for 398
popular artists. The most important album reviews for each artist of this list were ob-
tained using the Amazon Web Service interface and stored as textual documents one
for each artist. Each document was preprocessed and represented using standard tech-
niques from the field of Information Retrieval [17]. Preprocessing techniques include
stripping unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.)
and removing common stop words (e.g. a, the, of, etc.). The documents were then rep-
resented as a bag-of-words with each word being assigned a weight according to the
tf-idf schema. We came up with a list of 324 musical words, to incorporate the con-
cept of the modified weighting scheme described above in the musical context. If a
document had words present in this list, its weight was increased by a factor of o = 4.
The weights were then normalized so that the size of the documents would not have
any effect in their representation. A full-term indexing of the documents thus yielded
a feature vector of 36,708 words for the data set of size 398. We then removed the
words that were present in less than 5% and more than 90% of the collection as these
words do not play an important role in classification [13]. This dramatically reduced
the size of the feature vector to 3313. We thus had all the documents represented as a
398 * 3313 matrix.
For the map formation, we used the SOM toolbox [19] available for MATLAB.
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Fig. 2. Results for the Whitman artist list. The labels of the numbered map units and some of
the artists present in them are given in Table 1

Table 1. Labels and artists for the numbered map units shown in Fig. 2

Map unit Labels Artists

| Rap, Funk Limp Bizkit,
Kor,

Linkin Park

2 Reggae, Rap Bob Marley,
Shaggy,

Police,

311

3 Metal, Heavy Metallica,
Nirvana,
Smashing Pump-
kins

4 Techno, Remix Alice Deejay,
Prodigy,

Moby,
Chemical Broth-
ers

5 Spanish, Latin Ricky Martin,
Enrique Iglesias
6 Rock, Roll, Dire Straits,
Blues Queen,

Eric Clapton,
Bob Dylan
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We trained a Self-Organizing Map consisting of 49 map units in a hexagonal grid of
size 7*7 for all the 398 artists using the 398 * 3313 matrix mentioned above. After the
training phases, each map unit represented a model obtained from the collection of
reviews in the high dimensional space. The entire data collection of 398 artists were
divided according to the obtained map models on the two-dimensional grid and spa-
tially organized based on their similarities.

3.2 SOM Labeling and Visualization

Labeling plays an important role in the visualization of the self-organizing map [20,
21]. We employed a simple labeling technique where a map unit is represented by a
label or a keyword that has a higher weight, as calculated by the tf * idf weighting
scheme, when compared to other words that appear in the map unit. The modified
weighting scheme described in the previous sections also aided in labeling the map
units. Since we increase the weight of a word that pertains to the musical context,
many, if not all, of the labels that we obtained were from the musical list of words.
This is indeed desirable when we are labeling an SOM of artists as we would like to
see labels that are musical words like rap, rock, metal, blues and not plain English
words. We present here the results of the SOM model described in the previous sec-
tion with labeling. Fig. 2 shows a few distinct sections of the map with their respec-
tive labels and artists in Table 1. As can been seen from the results, we were able to
obtain a clear categorization of artists based on different musical genres (rap, metal,
rock, blues, techno etc.)

3.3 Validations

The results of our experiments were validated using Echocloud [1], a web-based mu-

sic recommendation engine. Echocloud works by crawling peer-to-peer networks to

capture users’ file lists in order to discover correlations between musical artists. We
would like to mention some limiting factors that made the validations difficult.

1. The Echocloud approach to finding similar artists differs widely from ours. Our
approach entirely depends on the artist reviews from the Amazon site, whereas
Echocloud is based on the notion that if two artists are found together in users’ file
lists, they are similar in some sense as having one tends to imply having the other
[1].

2. The Echocloud builds the similarity model using a database of around 120k artists
[1] in the so-called open world environment of users’ music collection, whereas we
performed experiments on the much-restricted Whitman artist list of around 400
artists.

3. Music similarity perception is subjective in nature. Even though we do not present
a subjective validation in this paper, we believe that such a validation is more effi-
cient for experiments related to music similarity perception. We presented such an
approach in an ecological environment in [22].

We compare the Top 10 recommendations from Echocloud with our Top 10 recom-

mendations for all the artists. We also compare Echocloud recommendations with the
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Table 2. Validations of our results for 398 artists with Echocloud’s Top 10 recommendations
without modified weighting scheme

Comparisons Total number of recom- Average recommenda-
mendation matches tion match in percentage

Top 10 482 /3980 12.1 %

3 BMUs 685 /3980 17.2 %

5 BMUs 982 /3980 247 %

Table 3. Validations of our results for 398 artists with Echoclould’s Top 10 recommendations
with modified weighting scheme

Comparisons Total number of recom- Average recommenda-
mendation matches tion match in percent-
age
Top 10 493 /3980 12.4 %
3 BMUs 785 /3980 19.7 %
5 BMUs 1038 /3980 26.1 %

artists that are present in the 3 and 5 Best Matching Units (BMUs) of the artist in
question. A Best Matching Unit for an artist i.e. textual document for the review is the
SOM map unit that best models it. The Euclidean distance measure is used in finding
the BMUs for an artist.

As can be seen from the results in Tables 2 and 3, the quality of the recommenda-
tions increases as we move up from the Top 10 comparisons to 5 BMUs. This leads to
an interesting observation that even though all the Echocloud recommendations do
not match with our Top 10 recommendations, some of them do certainly lie in the
nearby regions namely the 3 or 5 BMUs, which is by virtue of the map’s self organi-
zation. Most importantly, we were able to see an increase in the quality of recommen-
dations when the modified weighting scheme that exploits the musical domain knowl-
edge was incorporated into the system. We believe that the list of 324 words
pertaining to the musical context that was used for this can play an important role in a
recommendation service to yield better results, even though there is human interven-
tion in coming up with such a list.

4 MYMO: A Prototypical Application for Mobile Music
Information Retrieval

4.1 Existing Framework

We came up with a mobile music recommendation engine called MYMO that uses in-
ternal as well as external services to provide recommendations for similar songs and
artists. The song similarities are computed internally using a trimodal global similar-
ity measure to provide the user a set of similar songs given an anchor song. This
measure is realized as a weighted linear combination of three different local similarity



A Self-Organizing Map Based Knowledge Discovery 127

metrics, namely sounds-alike similarity, similarity of lyrics and cultural or stylistic
similarity.

S = wso* Sso+ wly* Sly+ wst* Sst Q)

where

Sso: sounds-alike similarity

Sly: similarity of lyrics

Sst: similarity by style/cultural aspects and
wso, wly, wst are the respective weights.

For a detailed description of the local similarity metrics, the reader is referred to
[22]. For the artist similarities, we interfaced with an external recommendation ser-
vice, Echocloud [1]. The engine was realized as a web based solution (Fig. 3). The
web site can be displayed on a small screen typical of PDA (personal digital assistant)
or PIM (personal information management) devices. To allow the user subjective and
interactive feedback, a virtual joystick was included that can be easily accessed using
the pen of the PDA. The recommendation engine uses the song similarity measure de-
scribed above. The position of the joystick has a direct influence on the individual
weights in the linear combination. In this way the individual users can select different
settings and find their favorite combination.

4.2 Integrating SOM Based Artist Recommendation Approach into MYMO

The SOM based approach for musical artist recommendations described in the previ-
ous sections can be integrated into our existing framework of mobile music recom-
mendation service to provide recommendations for similar artists. This can be used as
a replacement for the external Echocloud service that is currently being used to pro-
vide artist recommendations. The SOMs provide a spatial representation of the high
dimensional artist reviews. A model can thus be formed for a set of artists where simi-
lar artists are located nearby spatially and dissimilar artists lie farther away. Further-
more, it is not mandatory that the queried artist be present in the model formed by the
SOMs. The review for such a query can be obtained online from the Amazon site and
the best-matching unit (BMU) for this review can be found from the model. The art-
ists present in this BMU are therefore similar to the queried artist.

5 Conclusions and Discussions

We have presented in this paper a novel approach to musical artist recommendations
using Amazon reviews and Self-Organizing Maps. We introduced the concept of a
modified weighting scheme for text mining in the musical domain and demonstrated
its role in improving the quality of recommendations. We presented results for the
Whitman artist list of around 400 musical artists and validated them with the recom-
mendations from Echocloud, a web based recommendation service for musical artists.
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Fig. 3. MYMO: Mobile Music Recommendation Engine

We also demonstrated how this approach can be used in a music recommendation
service. Exploiting the semantics of the language behind the artist reviews by using
Natural Language Processing techniques could be a possible future work. The goal is
to extract as much relevant information as possible from the artist reviews by using
the state-of-the-art technologies from the fields of Information Retrieval and Natural
Language Processing. We believe that the approach presented in this paper would be
well suited for use in a recommendation service to provide quality services to all the
music lovers of the world.
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Abstract. The Internet Archive for Electronic Music (IAEM) is in-
tended to be a platform to access an extensive and distributed archive of
electronic music. It combines collaborative tools, real time signal process-
ing on the client side and the content of the archive with the concept of
learning sequences to form a powerful teaching, research and publishing
tool. The internet Audio Rendering System (1ARS) is a client browser ex-
tension which is part of the IAEM system. It extends a web-browser with
a flexible real time audio processing and OpenGL graphic display capa-
bility supporting multi-channel processing and streaming. This enables
users of the system to perceive multi-track recordings showing their in-
tentional acoustical context in virtual concert halls. These environments
may be used embedded in learning sequences for teaching, opening new
opportunities in music education.

1 Introduction

The ”Internet Archive of Electronic Music” (IAEM) provides access to a dis-
tributed archive of electronic music for the purpose of education and research.
It combines state-of-the-art Internet tools for information exchange and collabo-
ration with multimedia real-time processing and virtual concert simulations for
the exploration of works of electronic music and their interpretation.

With the integration of eduPlone the IAEM system provides an easy to use
platform for lecturers in which reusable learning elements can be incorporated
into learning sequences for online courses. All elements are standard compliant
according to the IMS Global Learning Consortium which is considered to be the
most wide spread standard for eLearning content.

The unique character of electronic music as eL.earning content is considered
by the development of the internet Audio Rendering System (iARS). iARS is a
browser plugin based on the well established computer music program Pure Data
(by Miller Puckette) allowing users to interactively apply sound processing on
online music streams. This opens new possibilities in music education like online
courses for spatial audio mixing or sound restoration. iARS in combination with
an extensive library of electronic music and the possibilities of eduPlone learning

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 130-138, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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sequences will have great impact on the way courses can be organised at music
universities.

Beyond the scope of education the IAEM system is intended to serve the
community of electronic music artists as a platform for publishing their work
and get qualified feedback. The realisation of the system includes tasks within
very different fields: legal aspects, technical challenges, the didactic approach
and the organisational framework.

This paper addresses these aspects. The subsequent sections discuss the ar-
chitecture of the IAEM system and its main components: The content database
as storage for the music content, the IAEM portal integrating the content stor-
ages, eLearning methodologies, collaboration tools and the iARS browser plugin.
Furthermore this section will address security issues. Subsequently, iARS is pre-
sented in detail showing the approach and its realisation. Finally, we draw a
conclusion, summarise the paper and present future plans about TAEM.

2 Architecture

The architecture of the IAEM system is a classical server-client approach with
distributed databases as back-end data source. But there is a significant dif-
ference: clients may also connect to the content databases directly. Figure 1
illustrates the approach.

Browser + iARS plugin

direct Audio streaming (mp3,0gg/vorbis)

IAEM Portal /
Comem\

Databases Clients

-~

7 .

Fig. 1. Basic structure of the ITAEM including client terminals

At the core is the IAEM portal server which provides a content management
system. This portal may connect to a list of content databases where the com-
positions are stored along with additional meta-data as usual in common music
libraries (composer, artists etc). The portal can process search-queries on the
data in order to present results to the user via the web interface. The user can
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browse through the information, attend to discussions or learning sequences and
select a work of music along with an audio rendering algorithm for listening.
Upon the user’s requests to receive a piece of music, the iARS browser plugin
starts at his or her personal browser. It loads the chosen algorithm and con-
nects to the content database to receive the requested music as an audio stream.
The plugin also provides graphical user interface in the browser window through
which the behaviour of the audio rendering algorithm can be altered online (i.e.
during operation). This offers users an interactive experience in music retrieval
via the Internet.

The direct connection between the client and the content database decreases
the performance requirements for the IAEM portal, since clients retrieve data
without occupying bandwidth or other resources from the portal.

3 The Content Databases

An TAEM content database system consists of four main components. The
database itself stores references to the audio data in the file-system and the ad-
ditional meta-data. This database can be queried by the IAEM portal through
a standard SQL interface. A control software at the content database server is is
responsible for managing the streaming server. It executes commands received
from the portal via a XML-RPC interface [1]. With these commands the portal
can initialise a stream, start or pause it and remove the streaming mountpoint.
It also controls the security layer. It will strengthen the security and peer au-
thenticity by certificates and SSL tunnel transmission.

The migration of an initial set of audio data into the system falls under the
responsibility of the operator and/or the partner institution. Subsequently all
users of the portal may contribute to its content, with an integrated reviewing
process ensuring the quality of information. The IAEM system provides a good
reason for institutions to digitise their music archives, especially multi-track
works. Multi-channel and audio rendering capabilities of the system create a
realistic reproduction of such works.

3.1 Streaming

In order to provide multi-channel capabilities the IJAEM content database sys-
tem needs to employ a streaming server technology which supports multi-channel
audio formats. Ogg vorbis is a new and free compressing audio data format for
encoding mid to high quality audio at variable bitrates from 16 to 128 kbp-
s/channel. Since version 1.0 rcl this standard also provides channel coupling
mechanisms designed to reduce effective bitrate by both eliminating interchan-
nel redundancy and eliminating stereo image information labelled inaudible or
undesirable according to spatial psychoacoustic models.

The streaming server of choice is IceCast 2, since it supports both the newer
ogg vorbis format and mp3. For setting up a stream between a content database
server and the client iARS plugin, the TAEM portal generates a random identifier
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for the stream and initialises a streaming mountpoint at the content database
server. It also provides the information to the iARS browser plugin which is then
able to connect directly and receive the stream. These identifiers are unique and
only available at the time an authenticated user requests a stream; this prevents
other clients from connecting to a stream which was not created for them.

The future security concept is intended to prevent interceptions of the stream
and guarantee peer authenticity of the streaming partners. Based on a IAEM
certificate authority a certificate is issued for every user and content database.
These certificates are verified at the beginning of each streaming event and will
authenticate the streaming partners. Furthermore, it is planned to use a SSL
tunnel for the streaming connection so that sensitive data may not be inter-
cepted.

3.2 Database

Along with references to the audio data the content database contains meta-
data related to the compositions. The design is based on a relational database
structure and is similar to commonly used library systems, but simplified to
suit the given requirements. The interface for portal queries is a standard SQL
command set. Meta-data include references to a composer database, texts or
lyrics, scores and other musicological observations.

Each record has a unique reference within all databases in the IAEM-Network.
Content can therefore be referenced unambiguously even from multiple portals.
Furthermore portal content, such as documents, discussions, mails can be asso-
ciated to database content by referencing this unique ID.

The following figure illustrated the database layout:

Figure 2 shows database tables and their relations. Besides the customary
Person table holding composers and artists, the Piece table is the core of the
structure. It represents the abstract idea of a work of music and is linked to a
certain recording through a Performance. Digitised music data very often refers
to an analog source. This is realised by RecordingMaster - the origin which
resulted from a performance - and RecordingCopy which is the actual digital
version available in the database. The Material table is a generic container for
all material associated with a Piece or any Person. This might be a score or
biography and may be of any type covered by MaterialType. All materials and
digital copies of any recording is restricted in use by a license stored in the
License table. These license texts cover all possible restrictions and are the basis
for the portal to decide whether to grant user permissions for the source.

4 The IAEM Portal

The TAEM portal is a content management system with various collaboration
tools with features to drive the iARS plugin and to query the content database
systems. The chosen framework is Zope [2] extended with CMS! and Plone [3].

! Content Management System
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AltName Person Event Publisher
person_id (foreign key) person_id (primary key) event_id (primary key) publisher_id (primary key)
name name place name
firt_name first_name event_date address
yearofbirth
Composer yearofdeath T
piece_id (foreign key) Proce Performance —
person_id (foreign key) 1ec MediumType
. . . event_id (foreign key)
P_ITCEJd (primary key) artist_id (foreign key) medium_type_id (primary key)
Material {“;_ 1 piece_id (foreign key) type
ateria subtitle - record_master_id (foreign key) comment
composition_commission
material_id(primary key) composition_date ¢
person_id(foreign key) premiere_date -
piece_id(foreign key) ——»| composition_date_comment RecordingMaster
license_id(foreign key) premiere_date_comment N _ N
material_type_id(foreign key) version recording_master_id (primary key) Medi
mimetype form_id (foreign key) channels cdium
content owner_id track medium_id (primary key)
. P sidl |
source root_piece_id leu:uion medium_type_id (foreign key)
i noise._reduction publ?s:‘eriid l(l'oreign key)
medium,i:‘l (foreign key) E:’lg:;:hi:g*g;ge
- tape_speed_ips ishing_
MaterialTypes Form sample_frequency p‘ubllshmginumhcr
signature
material_type_id(primary key) . . inv_number
name form_id (primary key) RecordingCopy
name
comment recording_copy_id (primary key)
channels
quality
License date
date_comments
license_id(primary_key) duration
licensetext audio_link
recording_master_id (foreign key)|
Every table has additionally an UID and PARENTUID field for Zope integration | license_id(foreign key)

Fig. 2. The database layout for IAEM content databases

Object orientated representation of content makes the system expandable for
information retrieval plugins extending the portal’s functionality. For integrating
learning sequences into the portal eduPlone was chosen as the state-of-the-art
eLearning platform.

The data presented by the portal is legally sensitive so that a secure au-
thentication method is compulsory. The Zope system provides an LDAP? au-
thentication product with which the user must log in before the portal can be
used. This allows also a personalised environment with user defined folders and
content. The rights can be set for every single user so that the access to music
and meta-data can be clearly determined to prevent any legal conflicts.

Collaboration tools are integrated to facilitate the communications between
the users. It is hoped that vital discussions and information exchange will en-
hance the content of the portal. Mailing-lists, discussion forums, information
agents and other common collaboration tools are available to make such ex-
changes possible.

For publishing, the portal features uploading to a content database. The
access rights for user published data can be set by the author via the portal.
For searching the content databases a single line search exists, as well as, a more
complex advanced searching and cataloguing facilities.

2 Lightweight Directory Access Protocol
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The didactic value for teaching is given by the integration of the tools into
eLearning courses. eduPlone is a product especially designed for the use with
the Plone CMS system and provides learning sequences for designing eLearning
courses [4]. For example: lecturers may design a course for digital recording
techniques by making raw material (a piece of not post-produced music) available
via the portal. In various learning sequences the students can then be asked
to solve problems such as finding a specific loudspeaker arrangement for the
recording. Students could play and explore within iARS and save their settings
to submit their results. Along with such sequences a vital exchange between the
students and the lecturer can take place by employing the collaboration tools
integrated into the system.

5 The iARS Browser Extension

iARS (internet Audio Rendering System) is a browser plugin extending the
browser’s capabilities with a flexible audio rendering machine. It can be in-
voked by an “object” tag within web pages. The signal processing is done by the
Pure Data programme which is launched by the plugin and remote controlled
via a XML-RPC interface. The processing algorithm can be defined as a regu-
lar Pd patch along with a graphical representation of the patch. This is done
using a IDL (Interface Description Language). Following such description the
plugin draws controls into the browser window with which the behaviour of the
algorithm can be altered.

iARS implements the Netscape Gecko Plugin API to communicate with the
browser. During the initialisation process the plugin checks for running instances
of Pd and launches an instance if needed. The plugin control block remotely
controls the Pd programme and builds the graphical representation of the loaded
patch. The Pd program is launched with externals which extend the capabilities
of Pd for XML-RPC communication and audio streaming. The GEM library
is used to draw real time computer graphics to an assigned window area using
openGL.

5.1 Operation

The plugin is launched by using the “object” tag embedded in regular HTML
code. A MIME type is registered by the plugin at the browser which refers to the
the data type associated. The following listing shows an example HTML code
for embedding iARS objects.

Listing 1.1. Embedded object tag
<html>
<body>
<OBJECT type="application /iARS”/>
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<param name="patch” value="http://iaem.at/amb.pd”>

<param name="gui” value="http://iaem.at/ambgui.xml”>

<param name="stream” value="http://dbl.at:8888/NHS271/”>

<param name="extras” value="http://iaem.at/extras.zip”>
</OBJECT>

</body></html>

The object’s application/iARS MIME type causes the browser to launch
iARS. A window handle provided by the browser is assigned to the plugin for its
graphical representation. The object tag must provide the following information
as parameters for iARS: The stream field determines the URI of the requested
audio stream, “patch” and “gui” both in URI format assign the Pd patch to be
loaded and its graphical representation. A zip archive of extras may be specified
to provide the patch with additional resources like abstractions or Pd externals.

The Gem external of Pd allows the plugin to draw virtual concert situations
into the browser window. It can be used, for example, to show the position
of virtual surround loudspeakers and even allow altering their position in the
virtual room.

5.2 Pure Data

Pure Data is a real time signal processing tool for customary PCs [5]. There are
many extension libraries available for Pd. The two main extensions developed for
the TAEM project are the XML-RPC interface and the streaming external. The
main advantage of using Pd as the processing core application is the multitude
of existing patches. Due to generic approach of the plugin these patches can be
reused with only minor adjustments.

The XML-RPC interface to the Pd programme is intended to become a
comfortable standard of remote controlling the application. It is possible to load
and close patches, but also to communicate with every single element of a patch.
There are mechanisms to bind callback functions to symbols so that an event
triggered communication - desirable for GUIs - is possible.

5.3 Graphical Representation

The graphical representation of a patch is not defined within the patch. This
allows the reuse of existing patches and the definition of a interface descrip-
tion language (IDL) more suitable for our application than the existing. The
implementation of the controls was made using Trolltech’s Qt toolkit [6].

Within the IDL file several controls are defined which are bound to elements
of the Pd patch. If either the user interacts by changing the value in the GUI or
the patch alters the value, the counterpart is informed. In this way, parameters
of the patch can be altered and values can be displayed correctly. The following
listing shows an example of a IDL file describing a graphical representation of a
Pd patch.
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Listing 1.2. Interface Description Language Example

<?xml version="1.0"7>

<IDOCTYPE interface SYSTEM ”idl.dtd”>

<interface >

<author>Christopher Frauenberger</author>

<patch>Ambisonic 3D</patch>

<version >1.0</version>

<input name="stream”/>

<group name="Example” orientation="horizontal”>
<vslider name="Volume” bind="volume”

min="0" max="100" value="10"/>

<levelmeter name="Left” bind="vul”

min="-100" max="0" value="0"/>
<levelmeter name="Right” bind="vur”
min="-100" max="0" value="0"/>

<group name="GEM” orientation="vertical”>
<onoff name="GEM Window” bind="gemwindow” value="1"/>
<onoff name="OpenGL” bind="draw” value="1"/>
<hslider name="Rotation”
bind="rotate” min="0" max="180"/>
</group>
</group>
</interface >

In the above example a simple interface is built with a vertical slider for the
volume, two levelmeters, another slider along with two buttons. The group tag
allows the user interface elements to be grouped together in a frame. The de-
scription shown above results in a graphical user interface shown in figure 3.

All possible tags and their relations are described in the document type
definition “idl.dtd”.

6 Conclusion

The proposed system combines very recent technologies to a powerful research
and lecturing tool. All components were designed to be flexible and generic. The
distributed architecture allows different partners to collaborate in providing their
clients with a comprehensive library of electronic music.

The iARS plugin is an approach to introduce real-time audio rendering to the
world of web applications. The underlying Pd programme was chosen because
of its performance and availability for a wide range of platforms.

Future work will definitely need to proof the concept by usability tests. The
portal and its components will be redesigned on the basis of the results of such
studies.
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Fig. 3. Screenshot of the interface described by the IDL example above
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Abstract. I describe here a real-time vision-based gesture recognition system
used in interactive computer music performances. The performer moves his
hands in a video-camera capture area, the camera sends the signal to a video di-
gitizer card plugged in a laptop computer. By processing the reconstructed im-
ages of the performer’s hands in movement the computer detects x-y positions,
shape (posture) and angle of rotation of both the hands. Data extracted from
image analysis every frame is used for controlling real-time interactive com-
puter music performances. Two approaches, one more formal the other really
operative, are presented.

1 Introduction

Modern human-computer interfaces are extremely rich, incorporating devices such as
keyboards and mouse and a wealth of advanced media types: sound, video, animated
graphics etc. In addition, advanced interaction strategies are being considered. A
good example of that is gesture interaction [1,2] where actions of a system are con-
trolled by a series of hand positions or postures. The term multi-modal is often asso-
ciated with such interfaces to emphasize that the combined use of multiple modes of
perception (e.g. visual and tactile) is relevant to the user's interface [3].

An interface, in a conventional sense, might comprise a window system and a
mouse through which interaction is possible by taking into consideration specific
areas of windows in the computer display. The system allows for very few degrees of
freedom at the same time because usually maps the two-dimensional cursor location
to do-it commands.

The problem with this approach is that it analyses human performance in terms of
encoded rules thus forcing a specific behavior on the performer. With this setting, the
user is likely to fill a sense of technological awareness and he tends to perceive the
machine as his primary interacting partner. In this way each act is performed to com-
municate the intended information with great details implicitly inhibiting the potential
of human effectors in enriching the semantic content of the information to be com-
municated [4].

Artistic performers usually needs many degrees of freedom to control at the same
time in order to communicate their emotions for giving expression to music based on
technology. This can now be achieved by including a computer in the loop between
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the human physical actions and the musical response, while addressing two basic
principles: - holding nothing at all: controllers respond to body position and motion
without requiring anything to be grasped or to be worn connected with wires; - sensi-
tive space: controllers sense the player to give the person the strong feeling of being
bathed in sound [5].

Moving along the guidelines highlighted so far, I have started developing human-
computer interfaces by using non-intrusive devices and systems based on the remote
sensing of postures of the hands and more generally of the human body [6].

1.1 Background

At the beginning of the ‘90s I started to tackle the fascinating realm of the real-time
control of digital sound and, together with other researchers and collaborators of
C.N.R. in Pisa, I realized a number of devices and systems based on the infrared (IR)
and the real-time analysis of video captured images technologies: TwinTowers, Light
Baton, UV-Stick, Imaginary Piano and PAGe system. The TwinTowers is an
electronic device based on IR technology consisting of 2 groups of four elements
arranged as the vertical edge of two parallelepipeds. After having presented this
device many times at technological and artistic level [7,8], I recently developed a
new version, also named PalmDriver, consisting of up 8 groups of 4 elements, which
works as a standalone device properly equipped with a MIDI OUT port.

Image processing technology has been used for realizing the other systems. The
same hardware and the same strategy have been used for implementing them all. A
CCD camera is connected to a video grabber card and, whatever the system, the digi-
tal image to be analyzed consists of the reconstructed image by means of an algorithm
which filters (that is, accepts) those pixels whose luminance is greater than a prede-
fined threshold. Although this algorithm would be not applicable to a generality of
images, it is precise enough to distinguish the luminance values of those pixels corre-
sponding to the hands from the rest of the scene. Besides, in order to improve the
robustness of the method, the performer dresses in black and has at his shoulders a
black background.

The Light Baton system has an on-board light LED source on the conductor's
baton tip powered by a battery placed in the cork handle. Implemented for conducting
a computerized orchestra, this system recognizes those movements of the baton made
by the conductor during a live performance that conform to international standards
[9].

The UV-Stick (and the systems reported in the following) works on the basis of
images of object or the hands themselves captured by the CCD camera and lit by a
source light placed where usually the camera is placed. In particular, in the UV-stick
the source light is an Ultra Violet lamp that gives the stick (a Plexiglas tube 50cm
long and 3cm diameter) a suggestive visual impact of a laser sword. The extreme
points of the stick are used for detecting the barycenter x-y position and its angular
rotation [10].

In the Imaginary Piano a pianist sits as usual on a piano stool and takes into ac-
count an imaginary line at the height where the keyboard of a real piano usually lies:
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when a finger, or a hand, crosses that line downward, the systems reports proper
information regarding the key number and a specific message is issued accordingly to
where and how fast the line has been crossed [11].

In the PAGe (Painting by Aerial Gesture) system, positions and movements of a
performer’s hands are recognized in an wide vertical plane; the performer acts as a
painter who uses his hands for selecting colors and nuances of color and for actually
drawing a picture; movements are performed in the air and the resulting picture is
projected on a large video-screen. Beside, special gestures trigger preset sounds
which makes operative the paradigm of synaesthesy in art [12,13].

These gesture recognition systems produce data-streams used for controlling
sound and graphics in real-time. To map information to sound, that is to define how
to link data coming from gesture recognition systems to algorithms that generate
music, it's up to the composer himself and is related to a specific composition [14].

After the experience gained from the realization of the above-described systems, |
tried a formal approach for realizing a general-purpose system able to recognize
shape, position and movement of the hands. The basic idea of this approach to gesture
recognition was derived from a paper by V.Cappellini [15] based on the Fourier
Transform and developed for recognizing bolts and tools sliding on a conveyor belt to
be selected and picked up by a mechanical arm.

Anyway, since this method (presented at the ICMC97 [16] and here briefly re-
ported) although stable and elegant, results rather time consuming and therefore not
fully suited for real-time application such as interactive controlled computer multi-
media performances. So, I developed a less formal but more practical and really op-
erative system for the purpose. I'll describe it in paragraph n.3.

2 Formal Approach

The digitized image coming from the camera is transformed into a binary matrix
where 1’s represent those points p(x;,y;) whose luminance level is greater than a pre-
defined threshold. The barycenter, i.e. the center of mass (x.y.), is given by the
weighted mean of rows and columns on the binary matrix as follows

xc_Z(ixZ'Ci,j) 3 _Zj(jXZiCi,.i)
=yl p = ——
IRTEN; 2GLj

where X, and y, are the coordinates of the center of mass and c;; is the (i-th, j-th) com-

ponent of the binary matrix so that: 2jCi.j and 2iCi,j are the count of pixels

valued 1 in the i-th row and in the j-th column respectively and 2i,;G.; is the total
number of pixels valued | representing the hand.

Next step consists in constructing a one-period-signal by the distances from the
barycenter of those points along the contour taken on radii at predefined angular
steps. For searching the second point of each segment (first one being always the
barycenter) program searches on lines Y=mX+g  for the most distant point of
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value=1, that is white; m is the angular coefficient of radius which changes with step
Ad corresponding to the virtual sampling rate frequency.

Since in general the posture of the hand generates non-convex figures, the scan-
ning algorithm just described produces signals corresponding to a palmed hand (like
ducks feet). However, as experimentally verified, this approximation does not affect
the analysis results. More critical is the choice of step Ad: when too large the algo-
rithm produces aliased signals and when too small great amount of computation is
requested for the FFT.

Experimentally good values have been found to be A 9= 27 and A9= 2z,
32

64

The following figure show two different typical postures of the hands, their corre-
sponding one-period-signals constructed as described and the resulting harmonic
spectrum computed by the FFT algorithm.

l H|||||,[[ull.||.

Fig. 1. Postures, one-period-signals and FFT analysis

The harmonic spectrum characterizes very well the posture of the hands and,
furthermore, has the very important property of invariance with respect to both rota-
tion and dimension (which changes with the distance from the camera). The result of
FFT is input to the actual recognizer that employs an algorithm measuring the dis-
tance between n-dimensional vectors.

Let the vector h=(hy,....h,) represent the harmonic spectrum derived from the fea-
ture associated to a hand's posture and let C be the set of vectors, each representing
the harmonic spectrum of a corresponding posture, previously recorded while training
the system. The recognizer selects a vector c¢* from the set C as the harmonic spec-
trum representative of h such that for all c¢=(c,...c,) € C it holds that

|» —c’"l2 <||n —CII2 with | |2den0ting the L2-norm. Rotation comes from the

phase spectrum: in this case only the first component is meaningful since the higher
components are simply multiples of the first one.
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3 Operative Approach

As I said I developed a new system that gets information from postures and positions
of the hands. This is less formal but, on the other hand, more flexible, faster and more
usable thanks to an high number of parameters put at disposal at the same time. Once
again, hardware and methodology are based on a video camera which captures the
images of the performer's hands, the performer dressing in black on a black back-
ground.

Now, instead of recognizing the shape of the hands, it's a matter of taking into
consideration the rectangle that frames the white spots of the hands. In this way pa-
rametric values provided by the real time analysis on the reconstructed dot images
deal with dimensions and x,y-coordinates of the center.

The video capture area is converted into a matrix of pixels that is then scanned
and analyzed. In the same manner as it happens in the well-known BigEye [17]
application, it's possible to define sub-zones where to apply the analysis process. This
has two main advantages: the process is faster and at the same time it solves the
problem of the presence of the performer's face. Without this facility, a complex and
not fully reliable algorithm for filtering out the performer's face should be
implemented. The sub-zones where to run the analysis can be dynamically defined.

The whole system is based on ordinary devices such as an analog CCD video
camera, a Capsure frame grabber PCMCIA card by IREZ able to convert images with
a resolution of 320x240 pixels
at a rate of up to 30 frame/sec
and a Macintosh PowerBook
G3-500Mhz.

In the following I'll use this
terminology: pane, i.e. the de-
fined sub-area that can be
placed everywhere in the cap-
ture video camera area with
whatever dimensions; frame,
i.e. the detected rectangle that ‘_Erame
delimits the shape of one hand ' '
considered as the reconstructed
white spot in memory, therefore
defined as spot-hand. Fig. 2. Typical operative situation

The algorithm that scans and analyses the postures and movements of the hands is
simple in principle but, at the same time, it allows a great variety of dynamic figura-
tions truly important for the overall impact on the audience during the performance.
In fact it's possible to invent many and new postures and movements to be used in
different musical compositions with any sort of free linkage with the theme and the
poetics of the music.

I mean that the great variety of shapes, postures and movements of the hands that
can be invented by the composer/performer creativity, can be mapped into the frame
classes so far described.
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3.1 Implementation

Handel has been implemented on a laptop PowerBook Macintosh G3 running at
500Mhz so that the system consisting of CCDcamera +CapsureCard +PowerBook
can be considered as a generator of information under the control of the performer's
hands gesture. That is, Handel can be considered as a general purpose controller
which issues messages of the same type of Midi messages issued by, for example, the
old MIDI mixer KAWAI MM-16 used for feeding real time musical commercial
products such as MAX.

Actually, I use the data streaming for compositions written in pCM (pureCMusic)
I realized and presented in the last years in many conferences and meetings [18,19].
The pCM programming framework gives the possibility to write a piece of music in
terms of an algorithmic-composition-based program and of synthesis algorithms also
controlled by data streaming from external controllers. Everything is written follow-
ing the C language syntax, compiled into machine code that runs at CPU speed.

The framework consists of a number of functions for sound processing, for gener-
ating complex events and for managing external data coming from standard Midi
controllers and/or other special gesture interfaces. For Handel I chose to use the UDP
protocol because it has two main advantages: it is faster and makes use of a single
small flat cable which plugs directly into the laptops outlets so avoiding the presence
of two Midi interface-boxes.

3.2 Analysis

Once a frame is grabbed and converted into a matrix of pixels and stored onto mem-
ory, the core of the callback routine which implements the functionalities of Handel is
invoked. This routine scans the panes, search for the spot-hands and, if any, computes
and reports dimensions and positions of the frames. The panes can be dynamically
defined by the pCM program/composition as required for different planned musical
situations and transmitted to Handel via UDP protocol.

More precisely the callback routine executes the following tasks for each active
pane: states the presence/absence of the spot-hand inside pane and, if present, com-
putes the related frame dimensions by scanning the whole pane and storing the high-
est, the lowest, the leftmost and the rightmost pixels coordinates belonging to the
spot-hand.

It's also possible, for each pane, to state the step to be used during the scanning: a
step value equal 1 means that every pixel is tested; step 2 means that 1/4 out of the
totality of the pixels in the pane are tested; step 3 lowers to 1/8 and so on. The step so
defines the grid.

As a consequence the algorithm is faster but, on the other side, does not guarantee
all the boundary pixels of the spot-hand are tested: the extreme pixels that delimit the
frame dimensions can lay on those rows and columns not tested. In this case a wrong
value is issued. This error, however, cannot be greater than the value of the step itself
and, considering the great advantage gained in terms of velocity, it results quite ac-
ceptable. And in any case the user can freely state that.
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Since, actually, very often a gesture controlled performance works on thresholds
(for example something has to happen when the mass of a spot-hand becomes greater
than a predefined value) to lose precision it's tolerable especially when it's a matter of
gaining something crucial such as a true real time control.

The formulas and the operative code program, which put them at work, are the
well-known formulas for computing the center of mass previously seen. The frame
dimensions are simply given by the difference of the coordinates between the extreme
points of the spot-hands.

Usually the hands assume postures that show the palm or the back in respect to
the CCDcamera and the audience such as those reported in Fig.2. Fingers can be kept
closed together or kept in the fist position. Furthermore many combinations of finger-
closed/finger-open (such as when counting) can be taken into consideration. With this
class of postures the resulting frames are nearly squares so that values to consider are
those related to the mass and its position within the pane.

3.3 Angle of Rotation

A second class of posture produce flat frames, i.e. where one dimension is considera-
bly lower in respect to the other. This is the case where the forearm is placed horizon-
tally and the open fingers point to the camera (mime an airplane flight with thumb
and little-finger as the wings) or in the posture used in the military salute.

Fig. 3. Flat posture A

Fig. 4. Flat posture B
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With this class of postures the resulting frames are flat and then it makes sense to
recognize the angle of rotation. This is computed using the well-known regression-
line formulas where x; and y; are the coordinates of the white points of the recon-

structed spot-hand:

So g = 2y . G)
slope=m === with S, = X oxy; N and S, =X (xi) TN
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As a final remark, I want to recall that it's not a matter of recognizing the shape of
the hands as seen in the first approach but, rather, that of freely controlling size, posi-
tion and rotation of the spot-hands which, in turn, change dimensions and rotations of
the frames. At the end the hands really control parametric values for giving expres-
sion to real time synthesized music.

As summary, these are the information detected by the program.

- spot-hand presence in the pane (true/false).
- spot-hand barycenter (x,y) coordinates

- spot-hand frame dimensions (base, height)

- spot-hand angle of rotation (if meaningful)

and sent via UDP protocol to the computer that runs the pCM program/composition.
The number of active panes defined by the pCM program/composition can be greater
than 2 even if, obviously, those really fully controllable at the same time are only two.

3.4 Future Plans

Hardware at the moment in use (PowerBook+Capsure) works very fine. However it
is based on obsolete technology: IREZ has not developed the proper drivers for Sys-
tem OS-X so that, should my old PowerBook or the Capsure card go out of order,
Handel will be no more usable.

I tried to use webcams based on USB and Firewire protocols but, unfortunately,
despite simpler to use, they work with a latency definitely unacceptable in real time
applications such as a gesture controlled computer music performance.

For that I’'m planning to use the PC-104 standard SBC serie that makes it possible
to assembly a very compact special purpose hardware able to: -grab images from
analog cameras; -analyse the spot-hands and produce the related values and -
guarantee the requested data rate transmission via USB, Firewire and UDP protocols.

4 Conclusions

Apart the way the whole mechanism works and apart the effective usability of this
approach to gesture recognition, I found myself to face the problem concerning the
performance visual aspect of gesturing in the air in front of the audience. Traditional
musical instruments force musicians to assume precise postures of the body and spe-
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cific movements of the hands in relationship with their mechanic and physical acous-
tic characteristics.

As a novelty, Handel proposes something where who controls and what is con-
trolled overlap: the hands are at the same time the instrument and the player. Here,
no real instrument exists that forces the performer to specific postures and gestures.
Therefore, to be completely free induces to search for a new coherence and elegance
to take into account while performing.

I found a first answer to this problem by observing gestures of magicians. In fact,
very often -if not always- after my concerts played using the TwinTowers and the
ImaginaryPiano, people from the audience freely report to me their impression of
having watched a magician beside a musician (the italian word for magician is pres-
tigiatore actually a contraction of presto-digitatore which means “he who moves
fingers quickly”). However, I was not quite satisfied with it because in my perform-
ances there is no trick or cheating.

Where I found a deep and valid answer is in Tai Chi Chuan that has a consider-
able variety of movements and postures and, as an Oriental Art, helped me to gain
awareness about unity (yoga) between body and mind. I want to highlight that I'm not
going to try an artistic and/or poetic linkage between the two disciplines just because
Tai Chi is not show but individual and spiritual research. In any case I feel myself
legitimated to use what I learned from Tai Chi about control and coordination of my
hands.
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Abstract. Performing music includes substantial listening skills on part of the
performer. Performing with an interactive computer requires the performer to
interact with the computer and intuitively and consciously include this
information in the responsiveness of his playing. The interaction can be
expanded to include the performer’s high-level decisions typical of open-form
notation. These decisions can be used for defining and re-defining the
computer’s role in the further development of the piece. In this paper I describe
how such an open-form notation is used in the interactive man/machine
performance environment of my composition ‘GUITAR’ for acoustic guitar and
interactive computer. The performance environment functions as a perception-
based multi-parameter space where the performer’s score provides means for
exploring the space. The open-form notation emphazises the interactive
functionality of the space, and a performance becomes one of many possible
explorations of the space.

1. Premises of the Composition

1.1. Open Form

Open form in composition has been widely used after 1950 by composers following
first experiments of Karlheinz Stockhausen, John Cage, Morton Feldman, Earle
Brown and others. Concepts later related to open-form notation have existed since the
emergence of notation itself. Well-known composers including Josef Haydn and
Wolfgang Amadeus Mozart have composed in open form, albeit quite informally,
such as the latter’s aleatoric ‘Musikalischer Wurfelspiel’. Some classical form
schemes such as ‘rondo’ have been shown to posess open form qualities
[Adorno,1970], and characteristics of open form have been shown to exist in more
recent closed form compositions such as Claude Debussy’s later compositions.
Today, open-form notation has different implementations ranging from open subsets
inside a closed structure, to open-form notation governing the entire formal layout.
On a micro-level notation has been extended to give the performer choices concerning
phrasing as well as of pitch and rhythm. Notation in an open form of the basic
elements themselves exists in a variety of ways, from fixed notation to graphic
notation and combinations of these. Comparison of compositions of extreme
indeterminacy by John Cage and extreme serialism by Pierre Boulez has shown that
open and closed form can posses similar cognitive characteristics.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 149-157, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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An exact definition of open form as opposed to closed form does not exist. Open
and closed form can therefore be understood as plausible and non-contradictive
notations that can exist within the same composition. This is fundamental to the use
of open and closed form within ‘GUITAR’, where needs for man/machine interaction
govern the choice of appropriate notation.

1.2. Open Form and Interaction

Interaction is a functionality of a system, where data continuously is being passed
between two components — in this case a performer and a computer — with
consequential changes to detail and form. In a performer/computer loop the performer
takes into account the perceptual information he receives from his own playing and
from the computer on the small-scale level. He uses this information to make
decisions on small-scale level, and on medium-scale level in choices of phrasing,
pitch and rhythm. By doing so the performer passes further information on to the
computer, which in turn is taken into account at subsequent steps. Each step is
potentially so small that the interaction can be perceived as continuous, and the
performer integrates his performance with the computer’s response through
perception requirements implied by the score. In a musical and narrative or
conversational context, open-form notation becomes a logical consequence of
interaction because it switches the focus from the object of perception to the process
of perception [DeLio, 1984].

On the small-scale level a performer perceives and balances the timing, phrasing
and dynamics of his playing in order for the composition to develop satisfactory in its
details and overall form. Open-form notation provides an enlarged framework for
such expressive action/reaction. I have taken this concept of interaction a step further
permitting the computer component to respond to medium-scale decisions taken by
the performer at nodes and points of bifurcation, and to interfere with large-scale
formal structures. Furthermore, the interaction is made to allow for cross-relation
between all three basic levels of interaction:

e small-scale level of detailed, expressive actions such as timbre, phrasing and
timing,

e medium-scale actions such as bifurcation decisions in the open-form section, or

e large-scale formal level where a computer accompaniment in a subsequent
section is based on key performance data gathered in a preceding section.

1.3. Further Development in the Case of ‘GUITAR’

In accordance with these man/machine interactions and decisions the open form of
‘GUITAR’ takes on a particular form in performance. The computer decisions are
based on analysis of the performance and on the rules and guide-lines laid down in
the programming. Actions by the performer therefore influence the computer
component in its decision-making on the formal level as well as on a one-to-one
relation of performance expression enhancement. The result is an interaction where
the three levels of interaction can freely interact.
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It has become my understanding while composing and programming ‘GUITAR’
that the performer best can be seen as moving around in a performance space while
performing the score. This has in turn influenced my attitude towards composing and
appreciating interactive music since time-based concepts of form must align with
semi-static multi-dimensional concepts of ‘object’ or ‘state’. This amalgam of
attitudes towards composing — or sound-organizing — must take into account a
cognition not readily explained by traditional or contemporary composition models.
This seem to be a very fertile area for further practical study and theoretical thinking,
since it essentially combines two very different approaches to organizing time,
without suspending or negating the existing body of work in either area.

2. The Score

2.1. Overall Layout

‘GUITAR’ is divided into three main sections and one transitory section (fig. 1). The
first and third section is in closed form, while the second section is in open form. The
transitory section is a combination of these notation-forms, as its function is to bridge
between the second and third section. First and third section establish, relate and
develop key form identifiers of the composition, and they function as a defining frame
around the open-form second section and the transition back to closed-form notation.

first section second section transition third section
performer

notated open notated

Al-8
< B1-8

Cl-8
texture A
texture B
texture C

related semi-open consequential

computer

Fig.1. Overall layout

2.2. Formal Development

Identity relations (fig. 2, 6, 7) and form identifiers and their development (fig. 3, 4, 5,
6, 7) in sections one and three create perceptual cross-relations and regular
reinterpretations. They draw attention to differences and similarities between the
performer and the computer. When the material from the first section reappears in the
third section, the corresponding changes in the computer component are emphasized.
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This new relation in turn points to consequences drawn from the musical ongoings in
the second section, and in the transitory section. The time-scale for these activities are
on the macro level, typically 1-10 minutes.

Fig. 2.

sul pont,, sonore

2N

Fig. 4
2
o sets o By, FE Ty,
u e ek
—— —
Fig. 5
S = Zhe>
= assss s g
Fig. 6

e R O N e sul pont., sonare

T t S T . —— i t

W@
K4 —— R

The first section develops into an unbalanced and energetic state. This prepares for
the second section, and is an example of an unstable and ambiguous form concept
common to open form applied to a closed form.

The second section is an open-form notation of three subsections A, B, and C each
consisting of eight statements (fig. 8). The statements in each of these subsections are
to be played in the order decided by the performer. The only rule given is that in any
given subsection the next line in order must be played. The material in the three
subsections converge towards the end (fig. 9), but the way and speed with which they
converge are decided by the performer.

When the performer has played all 24 statements he continues to the transitory
section which is chaotic and random as a result of the compression subsections A, B,
and C have undergone. The transitory section ends with a sequence of exclamations
after which section three begins. The gradual progression from calm order in the
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beginning of the composition into complete chaos reached at this point remains
unresolved. Instead, section three which contains numerous cross-relations to section
one begins.

Fig. 8. Subsections A, B and C; first statements
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2.3. Score-Computer Relations

Entities, moments or passages in the score lets the performer pass on musical
expression information in real-time to the computer. This information is used by the
computer to influence the synthesis and generative algorithm parameters. The
computer may use this information for immediate processing or it may be stored for
later use.

When the computer response is perceived to react on the small and medium time-
scale of 0-5 seconds it will have consequences for the performer on the level of
musical interpretation with consequences for phrasing and open form choices
provided by the score. It provides the performer with a degree of expressive control
over the computer while the performer in turn also is influenced by the computer
response. When the response lies on a larger time-scale it will have consequences for
the overall formal development of the piece. However, it is not possible to make a
complete distinction between the influence on these time-scales since choices in the
open form section are influenced by the sum influences exercised on the small time-
scale.
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3. The Computer Component

3.1. Software Environment

The computer part is realized using the max/msp software package [Zicarelli, 2004].
Objects used are kernel objects, external objects, and abstractions. A number of
algorithms in the form of ‘patches’ are used.

3.2. Analysis

The acoustic guitar signal is picked up by a microphone before it is digitized and
analyzed. Pitch estimation and spectral information is extracted by means of an FFT
algorithm in an external object called fiddle~ developed by Miller Puckette [Puckette,
1998]. Amplitude following such as continuous envelope extraction and attack,
threshold and rest detection with derived note duration information is also taking
place.

3.3. Signal Transformation
Signal transformation methods used are waveshaping, harmonizing, filtering, delay

through multiple variable delays, amplitude modeling, reverb and phase-based
spatialization.

3.4. Synthesis

Synthesis methods used are modulation of frequency and amplitude.

3.5. Sampling

A granulation technique using real-time and pre-recorded audio material is employed.
The grain algorithm is based on the work of Cort Lippe [Lippe, 1994]. Spatialization
of the grains is made according to ideas derived from statistic models.

3.6. Digital Signal Processing Chain

All of the above mentioned DSP techniques can be routed to become input of any
other technique provided that technique accepts a signal. The techniques are not all
running simultaneously as it would task the cpu too much. Configurations are created
on the fly as needed and processing techniques are turned on and off accordingly.
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4. The Performer/Computer Relation in Performance

4.1. Analysis Considerations

Performance data extraction of an acoustic guitar is not straight-forward. Polyphonic
playing and resonance from strings affect the reading of the spectrum and make for
ambiguous analysis results. Playing artifacts from string depression on the fretboard
and noise from the wound strings when playing positions are changed produce noise
and irrelevant pitch information. Some of these issues can be addressed by treatment
of analog signal prior to analysis and subsequent treatment of the extracted data. It
may influence choices in the composition at points where unambiguous signal reading
is impossible to achieve.

I have made this lack of precise information a characteristic towards the end of the
second section in ‘GUITAR’. To successfully do so I had to consider it inside the
concept of the composition because the use of such ambiguity must be in good
consequence with the context in which it appears. The focus of attention at the
moment of composing shifted the technical limitation to one of compositional
approach. The lack of precise information became a legal component of ‘GUITAR’
since the chaotic end of the open form section continued into the transitory section.
This section is a high-point of chaos before a returning to the ordered closed-form
notation takes place. The characteristics of the instrument, its performance, and of the
analysis method thereby came to have important influence on the composition, further
empbhasizing the concept of an interwoven man/machine texture.

4.2. Some Characteristics of Interaction

Real-time DSP parameter manipulation readily relates to the perceptual nature of
performance skills and is an effective interaction technique. A performer makes
instant physical adjustments for to control his sound based on the feedback he gets
from a combination of his auditory and tactile senses. This feedback is combined with
the feedback from the computer through the loudspeakers. DSP parameter
manipulation tied to performance analysis is part of the feedback to the performer’s
combined auditory and tactile senses in as far as he feels such a connection to exist. If
he feels he influences or controls the computer sound he will seek to integrate it in his
expressive performance.

I therefore make a distinction between interaction and triggering which I see as
being at the extremes of a man/machine relation. An algorithm may be triggered to
begin generating data without any further interaction between performance data and
the data generated. A soundfile may be triggered for playback without any interaction
between the soundfile — or any point in the chain between the soundfile and its
conversion to analog audio — and performance data. These actions are pure triggering.
On the other extreme interaction can be in the form of the previously described
continuous, real-time affect of digital synthesis algorithms, of algorithms generating
such data, or through affecting the behavior of high-level compositional algorithms
such as those used for computer decisions on the form level. These actions are
interactive. But mostly a combination of computer generated and performance
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derived data is active in some form and it is seldom so that pure triggering or pure
interaction his taking place. The combination and oscillating betweeen mostly
triggering and mostly interaction is a way to provide integrity to the compositional
ideas of the author while giving the performer a true sense of expressive and
interpretive influence on the man/machine system.

4.3. Interaction in the Case of ‘GUITAR’

In the first section the computer is responding to the performance with standard
processing techniques. Selected synthesis parameters are affected by performance
analysis in order to enhance the expressivity of the computer part. In the second
section the computer has three textures to accompany the performance of each of the
subsections A, B, and C. The performer decides which of the subsections to perform
and the computer identifies the subsection during the first 2-3 seconds by detecting
key pitches. The transitory section binds all the computer textures together in a rather
chaotic musical expression. It is the dynamic high-point of the composition and
relevant processing methods from the subsections are combined, together with
elaborate spatialization. The computer part in the third section is influenced by the
performance of the subsections in the second part as it decides on the range of
samples to be used for granular synthesis in the third section.

An example in ‘GUITAR’ of real-time parameter manipulation technique based on
performance analysis is grain size, transposition, and spatial placement in granular
synthesis determined by relative weight of harmonics extracted from the analysis of
the guitar. In its lower range the acoustic guitar has a relative greater weight on the
Ist harmonic in softer dynamics and greater weight of higher harmonics in louder
dynamics. This becomes apparent when a sustained note is analyzed since the
spectrum after a few seconds almost only contains energy at the 1st harmonic. By
tying grain parameters to this relative balance the displacement is controlled by note
attack, note loudness, and note duration. This relationship may not be obvious to the
performer at the first rehearsal of the piece. It may become obvious during the
rehearsals and in general the performer’s understanding of such interaction benefits
the interpretation of the piece. The decision to hide or emphasize a relation of this
nature is not always obvious as some interaction techniques may yield subtle, albeit
important results.

Such interaction on a smaller time-scale may also have consequences on a larger
time scale. If it is expression-enhancing data it can be hidden, but it could arguably be
emphasized if it affects form or the development of a form unit, such as a section.
Since it affects the performance, it affects the intensities of the statements which
articulate the formal elements, thereby affecting the balance between these elements
and consequently the relative weight of the entire section. In ‘GUITAR’ this is indeed
the case and the performer is requested to take this perceptual information into
account when performing the section in question.

Interaction techniques spanning larger time intervals are also employed. In the
second section a number of audio samples are taken of the performance. The samples
are ordered into three collections A.coll, B.coll, and C.coll, according to during which
of the three subsections A, B, or C they were taken. Only one of these collections will
be used for granular synthesis in the third section. The decision of which of the three
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collections to use is based on the relative weight by which the performer performed
the three subsections. It is calculated as a ratio between average loudness, note
density and overall spectrum of each of the three subsections.

5. Concluding Remarks

Computer-supported performance changes the possibilities for musical performance.
A dynamic relationship between a performer and an interacting computer can enrich
the musical level of performance. The computer provides a dynamic, multi-parameter
performance space and the performer explores this space through the performance of
the accompanying score. Conceptually, the parameter space is the ‘world’ and the
score is the ‘individual’. Time-based interpretations of such a space through score-
performance provides new possibilities for musical performances. These explorations
can be extended beyond the formal ideas of a strictly musical-compositional narrative.
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Abstract. Although many artists have worked to create associations
between music and animation, this has traditionally be done by develop-
ing one to suit the pre-existing other, as in visualization or sonification.
The approach we employ in this work is to enable the simultaneous de-
velopment of both music and sound from a common and rather generic
central parameter variation, which may simply indicate a structure for
periodic repetitions. This central parameter variation is then simulta-
neously mapped to appropriate musical and graphical variables by the
musician and the animator, thereby contributing their own interpreta-
tions. The result of this mapping is then rendered in an intermediate
form where music and animation are allowed to iteratively influence each
other. The main piece of software in this development is the system which
allows exploration of parameter mappings. The software interface allows
both musician and animator to meaningfully experiment with the other’s
mappings since the interface permits access in a common form, without
requiring additional skills to interpret.

1 Introduction

Throughout recent history, various artists have explored the relationship between
music and colour and between a soundtrack and its animation. While early
attempts to generate both sound and music from the same composition met only
with mild success, it has been observed by artists like Barry Spinello [26] that
“we are now at the point where film and music have gone their separate ways so
that the only conciliation of the two seems to be some form of ‘synchronization’;
that is music will be composed for an existing film sequence or vice versa.”
Current examples of this sort of conciliation are the work done by Lytle at
Animusic [17], where animation is generated to correspond to a pre-existing
MIDI score, and the work done by a composer creating the score for a movie
once that movie is complete. Popular music visualizers, like WinAmp [22] and
iTunes [1] use a different approach that is reactive in nature since they are
intended to create a visual for the sound being heard at the moment. This
reaction is not dissimilar to the way pianists may have approached the task
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of accompanying silent films in years past, although repetition for them might
have improved their interpretation for subsequent screenings. While Lytle’s work
creates visualizations for sounds at the note level, WinAmp makes visualizations
at the sample level. However, neither allows for any interaction between the
sound and the visualization.

Examples abound of either the music or the animation driving the develop-
ment of the other, either in realtime or not. However, little has been done to
explore a process that allows the music and animation to be developed together
by mapping each from a single central parameter variation. The resulting inter-
mediate music and animation can further be used to inform each other, to create
more interconnections and nuances in the final work. The principle advantage
of this parameterization is that musician and animator can both interact with
the piece using the same parameter set so that one can affect the portion under
the domain of the other. This empowers the animator to say “music like this”
or the musician to similarly say “pictures like this.”

This paper describes a process that allows musicians and animators to work
together and collaborate closely by virtue of computer-support for the param-
eterizaton and exploration of the resultant parameter spaces. The rest of the
paper is organized as follows. Section 2 describes the motivation and prior work.
Section 3 describes the present approach and the use of computer-based tools to
support it. Section 4 presents an example of how this approach can be used in
the development of an integrated work. Section 5 discusses conclusions from our
experience and directions for future work.

2 Background

There are different ways to combine music and animation and there are different
ways to conceive of the relationship between the two. Schillinger [24] and Whit-
ney [30], to name two, had their own precise ideas about this relationship, which
Moritz [20] distinguished as quantitative and qualitative. Bute and Schillinger
had an long-lasting collaboration to explore Schillinger’s system of music through
Bute’s animation. The of the previous work can be divided into visualization of
audio and sonification of video.

2.1 Visualization

Audio visualization has been a popular application of cross-modal media gen-
eration since computers made it possible to analyze sound in real time. In gen-
eral, there are two types of audio visualizers: waveform-driven and event-driven.
Waveform-driven visualizations encompass the visual plug-ins available in media
players such as WinAmp and iTunes. The sound waveform (and often a rudimen-
tary frequency analysis of said waveform) is made available to a plug-in program
which renders visual data based on the waveform data. Usually, this consists of
drawing and manipulating the actual waveform or spectrum, in the style of an
oscilloscope or spectrum analyser. and adding colours and transitions that are
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unrelated to the sound. This method is consistently successful in generating vi-
sual content related to the sound, however it can only react—the visual medium
depends entirely on the acoustic waveform in the current time frame, or more
commonly of an immediately past time frame. This method can be extended to
predict future events, but little work has been done on this, primarily because
the iTunes and WinAmp visualizations are doing precisely what they were de-
signed to do: add some visual effects to what is primarily an audio experience.
These visualizations are incapable of producing anything contextually relevant,
for example a picture of the musician. Their role is strictly augmentative. Even
if it were part of the goal to produce a contextually relevant visualization, it
is very difficult or even impossible to choose the extra visualization informa-
tion (colour, movement etc) based on acoustic constructs because the available
acoustic information is strictly limited to instant realtime waveform and spec-
trum information.

It should be noted that waveform driven realtime visualizations like iTunes
and WinAmp can be augmented with contextual information from ID3 tags,
which contain artist, album and year information, as well as genre information.
Visualizer components can be developed to make use of this information, using
specific colour palette for specific genres of music, however this data is limited to
the accuracy of the person who entered these tags, and is a single characteristic,
constant for the entire sound piece. If a piece of music changes from minor key
to major key half way through, this change is not reflected in the ID3 tags, nor
is it possible to reflect any structural information like this in the visualization.

The second class of audio visualization is one step removed from the actual
waveform, to the events that cause the waveform. In this case, a set of paramaters
(the list of events) is used to generate both the video and audio media. The
classic example of this is Wayne Lytle’s Animusic pieces [17, 16]. In this work,
a MIDI (musical instrument digital interface) file is used to generate music, and
an animation is also generated which corresponds to the music. Virtual musical
instruments are designed which actuate according to the MIDI file, so that it
appears that the virtual musical instruments are “playing” the music.

The Animusic work is very cohesive because it is animating the instruments
or the likely sources of the acoustic events. It works because the domain is
auditory and visual at the same time, in the same way that a moving mouth on
a face tends to fuse with an auditory speech waveform into an apparant single
entity.

Event-based visualizers like Animusic are inherently non-realtime because in
many cases, visual events must precede the corresponding acoustic events. In
order for a visual drum hit to appear to synchronize, or fuse, with the corre-
sponding acoustic event, the drum stick must begin the motion before the event,
so that the stick strike will occur at the same time as the sound. Another limi-
tation with this technique is that visualizations can correspond only to acoustic
events. An acoustic event without an apparent visual analogue, such as back-
ground ambience or continuo, must be visualized in an abstract way and this
does not always fuse as well as directly realizable instruments like drums. This
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abstract visualization, combined with the exaggeration of non-moving instru-
ments like horns, may create some dissonance in the synchronization.

The fundamental limitation of this technique, as well as the realtime visu-
alization mentioned above, in the context of this paper, is that both are in-
herently unidirectional. All relevant generated visuals are based entirely on the
pre-recorded sound. In the best case, the realtime visualization technique can be
applied to realtime sound input, and perhaps a person could play an instrument,
watch the corresponding visualization, and change the way they play based on
the visuals immediately past. Even in this case, all visuals are generated based
entirely on the sound waveform, and as such, no interaction is possible.

2.2 Sonification

Sonification is a complementary technique, where sound is generated based on
numerical or visual parameters [28, 14]. Historically, sonification (also called au-
ralization) has referred to the production of sound based on some data-driven
parameters, as an augmentation to data visualization techniques. Sonification of
visual representations has been done, but in a very formalized way. A straight-
forward historical example is the musical score: commercial systems exist which
will scan a piece of sheet music and translate the resulting image into a musical
representation such as MIDI or MusicXML [8], for playback or manipulation
in a music editing program. A more general application of the sonification of
graphical objects is composition by time-frequency diagrams, where a composer
“draws” the score on a piece of paper in a time-frequency representation, and
the computer scans the sheet and produces sound corresponding to the lines
drawn by the composer. This is much more versatile than simple score scanning,
since dynamic time-frequency constructs such as sweeps and noise clouds are
available to the composer, however this method is not realtime and requires a
development—evaluation cycle where a figure is drawn first, and after the figure
is complete the new composition can be heard.

2.3 Combined Visualization and Sonification

Cross-modal system have been proposed in the past which attempt to integrate
visual and acoustic events into a contiguous whole. Of particular note is the work
of Hahn et al. [9, 29], where visual and acoustic events are generated together.
Their approach seeks to synchronize the development of sound and motion by
connecting the sound and motion parameters before rendering. Their work is
primarily motivated by the addition of sound effects to graphic objects, such as
wind-chimes or a spinning disk. The animation of the movement of the object is
described using a set of parameters, and these parameters are used to synchronize
and generate the associated sound.

In many ways, this is the inverse of Lytle’s event-driven music visualization
described above. In this case, visual events are described in a parameter space
and the corresponding acoustic objects are generated from this parameter space.
The same limitations apply to this method as did to Lytle’s Animusic: the system
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is inherently unidirectional and the sounds match the motion only inasmuch as
the motion can be seen to generate the sound. Motions with no natural associated
sounds cannot be linked to a sound by this method in a unified way.

This should not be taken as a criticism of these methods—Animusic and
Hahn’s integrated approach are both exceptional pieces of work, for their speci-
fied domains. The automatic generation of sound effects (also called digital foley)
is an interesting and difficult research domain in its own right. Rather, we see to
show how our system of interaction is different from these previous systems. It
is bidirectional rather than unidirectional, and iterative rather than single-pass.
Each medium has the potential to be equally important in the final generation,
and what is perhaps most important, the structure of the proposed system is
not specific to the media being generated. The system could be expanded to any
number of related media, all generated from the central abstract parameter set
and augmented by interactions with the other media.

Although the translation of data from one medium to another is a well-
established research area, in the above examples, and indeed in much of the
related work, one medium has a strictly defined format from which parameters
are extracted to generate the second medium. Little has been done in the way
of the simultaneous, bidirectional generation of visual and acoustic objects from
a common set of parameters. The next section describes a computer-supported
approach to facilitate such simultaneous generation.

3 Approach

Parameterizations of music and visual art are available in a variety of forms. Such
abstractions are useful to enable a richer exploration of the subject material by
broadening one’s concept of the material. For example, Stockhausen’s music
explored different parameters [27]. Boden [5] discusses conceptual spaces defined
by stylistic conventions, and how to expand those spaces with three rules: “drop
a constraint”, “consider the negative”, and “vary the variable.” The card deck,
known as Oblique Strategies [6] also attempted to provide a means to acheive
such an expansion.

However, the conceptual spaces might not need so much expansion as more
effective exploration. In discussing his work for the film Arabesque, Whitney
says (in 1980) that “this program concept was not deeply ‘mined’ for its fullest
possibilities. ...It is significant to realize how meager my experience was in
exploring the Arabesque material, and how limited all exploration is to date, in
this area of computer graphics.”

Whitney used a manual approach, according to Kochhar et al. [15] with
respect to the computer. While the computer provided the raw capabilities,
Whitney was responsible for putting everything together. Other relationships
between human and computer identified by Kochhar et al. [15] are automatic,
at the other end of the spectrum from manual, and augmented which seek to
balance manual and automatic characteristics to support the user in his or her
task, Automatic systems, which generate solutions with a minimum of user in-
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put, are precluded from this task because, as Whitney said “art is a matter
of ‘judgment — not calculation.” ” In terms of visual decision making, Bertin’s
process [4] comprised matrix analysis of the problem (questions are defined);
graphic information-processing (answers are discovered); and graphic communi-
cation (answers are communicated). For him, it was clear that this work could
never be automated because no machine would ever be able to solve this problem
of imagination.

Between these extremes are augmented systems that enable computers and
humans to work together. In a “good” interface, according to Baecker et al. [3]
human and computer “should augment each other to produce a system that is
greater than the sum of its parts. Computer and human share responsibilities,
each performing the parts of the task that best suit its capabilities. The com-
puter enchances our cognitive and perceptual strengths, and counteracts our
weaknesses. People are responsible for the things the machine cannot or should
not do.” For Baecker et al, [3], human capabilities include judgment and creativ-
ity and computer capabilities include patience and reliable memory.

The cogito system [10, 11] has been developed as a means to preserve the
user’s ability to exert judgment while exploring a large, complex parameter
space. Points in the space are constructed from all possible combinations of
values from the different parameters. For example, given 3 parameters each with
10 possible values, the space has 10° = 1000 points. Foley and Ribarsky [7]
wrote that only automatic methods could be used effectively with large param-
eter spaces because otherwise the users would be overwhelmed. Users of the
cogito system have not been overwhelmed, however, even though they deal with
millions of possible combinations [10]. The system, depicted schematically in
Figure 1, allows users to apply their own judgment when assessing alternatives
automatically generated by the system, which has the patience to realize these
different combinations and keep track of them.

The system functions in two ways: first it allows people to explore differ-
ent relationships among parameters. By reorganizing the view of the parameter
space, as shown in Figure 2, it is possible to transform one’s perception of the
parameter space from Klondike (difficult to navigate) to homing (easy to nav-
igate) and find a desired solution [23]. Secondly, it records and manages the
exploration of space, so that the space can be explored in a systematic way and
one can return to previous explorations to examine other options at decision
points. In this way, the system is an example of a numerical experimentation
environment [13]. Where there are examples of interest, the user may click to
select them. The subsequent space of alternatives contains all possibilities con-
sistent with those selections. For each parameter, the list of acceptable values
comes from those in the selected exemplars.

The Design Galleries concept [19] has some interesting features - namely
that it can show alternatives that are good examples of a set of values, however
the evaluation function has to be specified a priori. The cogito system permits
results to be partitioned based on qualitative or quantitative differences in values
within one or more parameters.
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Fig. 1. Schematic look at the hierarchical interface: the space of available alter-
natives is grouped according to user-specified criteria. Each group (A — F) has
a representative element (a — f) which is displayed to the user. The subspace for
the next search iteration is based on the user selection (b and f).

The process of generating media from a parameter space is illustrated in
Figure 3. It begins with the selection of a central parameter variation, followed
by the selection of a mapping strategy to move from the central parameters
to the media. A separate, independent mapping strategy can be selected for
each medium in question, in this case for sound and video. Once the mapping
strategy has been selected, the media are generated. At this stage, there are
three options. The generated media can be taken as complete, the central pa-
rameter variations can be re-visited, or a set of intermediate parameters can be
derived from the generated media. These extracted parameters are then mapped
to media-specific constructs, and the media is re-rendered. Each parameter set
(central and intermediate) can be re-visited as many times as necessary.

This parameter variation is expressed in generic terms so that both musician
and animator have equal access to its modification. Such variations could be con-
structed in different ways: mathematically in terms of trigonometric functions
or visually by sketching curves then copying, scaling, and translating them. Fig-
ure 4 illustrates one set of parameters used by Whitney [30]. It shows 12 points
and the differential movement applied to each so that at the end of the cycle,
the points are once again coincident. This illustrates in general Whitney’s ideas
about digital harmony, which he described in the context “the relationship of
the three terms: differential, resonance, and harmony. First, motion becomes
patterns if objects move differentially. Second, a resolution to order in patterns
of motion occurs at points of resonance. And third, this resolution at resonant
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Fig. 2. Consider a three-dimensional space, depicted in the top left, with axes
X, Y, and Z. Organizing the space in terms of any of those 3 axes leads to the
other states depicted. If elements in component X are chosen sequentially, those
in Y and Z can be selected randomly to give a sense available options.
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Fig. 3. The process of generating media from a parameter space. Begin by choos-
ing a central parameter variation which can be mapped separately to parameters
in the music and animation. Once the media has been generated, intermediate
parameters can be extracted and mapped, and the central parameter set can
be re-mapped until a desired effect is achieved. At each iteration, the generated
media is available.
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events, especially whole number ratios, characterizes the differential resonant
phenomena of visual harmony.”

Fig. 4. Parameter variations illustrating Whitney’s concept of digital harmony
(after Whitney).

This central parameter variation provides what can be considered the score
of the integrated piece being composed. As such, the central parameter variation
is represented with each parameter on a separate line, as in Figure 5. The score
analogy is appropriate for musicians but also for animators since it is very similar
to features present in most non-linear video editing programs and multimedia
authoring systems. Such a representation enables direct access to any point in the
work, allowing it to be played. The common and unbiased form of representation
helps both musicians and animators contribute to the integrated work, without
requiring a great deal of effort on the interface which has a low syntactic burden
and seeks to minimize the gulfs of execution and evaluation [21].

When an orchestra plays a piece of music, a score is used to tell each instru-
ment what to do. In the same way, the central parameters can be considered a
score for the generation of the sound and animation. Each acoustic and visual
event is generated based on the way the parameters change. The first level of
media creation, then, can be considered as an orchestra playing a score. Once
the first pass of media creation is complete, parameters are extracted from each
medium and used to augment the corresponding medium, so extracted visual in-
formation (like the area of the figure) is used to augment the audio signal, while
extracted audio parameters (like the loudness of the waveform) are used to aug-
ment the visual signal. These new parameter tracks are added to the overall
score to generate the next level of audio and visual media. This process is closer
to the idea of a group of improvisational jazz musicians playing a song together.
Each musician has the lead sheet in front of them so that they are all playing the
same song, but each individual then can alter or augment their playing based
on the interaction with the rest of the musicians. The lead sheet (the score, the
central parameters) is fixed, and when used as a starting point, ensures cohesion
between the players, but it is not the whole story, and the final music generated
by the players is more than the sum of the individual interactions.
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Fig.5. The Whitney parameter variations from Figure 4 | written in our pa-
rameter score format.

The next phase involves the musician and animator each creating mappings
from the central parameter variation to their respective media. It could be done
in a variety of ways: algorithmically by modulating some facet of the media as
a function of a particular central parameter component, or by choosing one or
more keyframes and fitting them onto the central parameter variations. These
exemplars may come from a variety of sources. The musician may play sounds
or phrases on a keyboard, and the artist might draw keyframes to be analysed.
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The cogito system can be used to present different key visual frames or sounds
for evaluation by the user.

Once the mapping has been established, the work can be rendered in a pre-
liminary fashion. At this point, additional parameters can be derived from both
the music and the animation. These parameters can be used to influence and add
depth to the work in its present preliminary form. These additional parameters
can be used either to map continuously onto an effect (such as adding reverb to
a sound) or to drive a threshold function which can trigger an associated event
(such as adding a musical note event). The cogito system could again be used
to explore the different applications of the derived parameters within the whole
work, serving as the basis for further iteration.

The goal of the cogito system is to allow the exploration of a space to find
the particular combinations that meet the needs of the user. Simon [25] called
these satisficing solutions. We get what is desired at a specific point in time,
recognizing that what is desired may change over time. It is helpful then to be
able to go back and revisit past decisions. In moving towards a piece that is
accepted by a wide audience, we may apply constraints from a range of sources,
to improve the final product.

4 Example

A short experimental piece, entitled Triangularhythmic, was created by the au-
thors with the help of Matthew McKague. The central parameter variation used
is based on groups of three. This was chosen with foreknowledge of the visual
space that would be explored, and with an idea of the animation mapping that
might be used. The visual space is that of fractals [18] in general, and in par-
ticular those generated from sets of contractive affine transformations [12]. The
sonic space is generated using rhythmic loops designed to fit the fractal trans-
formations at the central parameter level, and composed using Soundtrack [2].

The parameter score for this example appears in Figure 6. The top five
parameter tracks correspond to central parameters used to generate the first
pass acoustic and visual media. The bottom two parameter tracks are examples
of extracted parameters. Figure 7 shows the Fourier spectrum of the generated
soundtrack.

There are several benefits of this representation. One can see the whole time-
line at once, or isolate a specific segment, and see the interaction between pa-
rameters. This is a dynamic representation, meaning that while the central pa-
rameter score remains the same throughout the process, one can add secondary
parameters, such as the extracted parameters discussed above, and investigate
and understand the interaction between the central parameters and these new
extracted parameters. It is not necessary to show or describe the mapping that
generates these secondary parameters, since the original central parameters and
the new extracted parameters are both present in the representation. The pa-
rameter set mapping is inherent in the representation.
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The resonance inherent in the central parameter variation has been empha-
sized in both the music and animation, with the strong beats in the music and
the scaling applied to the animation. The beats present in the central parameters
also show up as beats in the secondary parameters.

5 Conclusions

The motivation for this work was the development of a process by which a
single, central, parameter variation could be used to develop intimately related
music and animation. Our initial experience with this approach has been very
encouraging. Long-term success with this approach is only attainable with a
highly developed computer-support structure, similar to the one presented here,
which allows the musician and animator to exercise their judgment while at
the same time sparing them from the details of the parameters being explored.
In future, we will look at ways to provide musicians and animators with more
ready access to the parameterizations and schemas put forward by various artists,
Schillinger [24] and Whitney [30] included. Conceptually, Whitney’s ideas have
meshed well with the approach we have presented here.

The use of parameter spaces by artists is directly related to the control they
have over the parameters. The systematic exploration of parameter spaces as
described here allows the artist to pass on some of the“grunt work” of navi-
gating the space of alternatives for composition to the computer. The system
does not limit the artist’s creativity in any way, but it also does not require
the artist to examine every permutation and possibility that is contained within
the parameter space. This entails a great deal of balance while removing tedium
without increasing restrictions. An exhaustive search is impossible, but a fully
constrained search is uninteresting, and risks missing desired areas of the pa-
rameter space. The artist using the system can therefore discover global areas
of interest and iteratively constrain the search space to extract more and more
detail, with the consistent option of re-tracing and examining other areas. The
goal is to enhance the composition process by enabling exploration based on the
artist’s conceptualization of the problem, which is translated into an appropriate
parameterization of the problem space.

The discovery of appropriate parameter mapping paradigms is another issue
which depends on the situation. In some mediums, there exist well known and
well used parameterizations, and these should be utilized whenever possible. This
allows the artist to continue to use paradigms with which he or she is familiar,
and perhaps examine them in a new light, but again, they should not be used
to artificially constrain the exploration.

Further work will include the investigation of which parameters artists will
use within the context of this type of system, and how fully they are able to make
use of the extended abilities such a system could give them. To this end, we will
prepare and execute perceptual experiments to ascertain the interaction modes
that are most helpful to the collaborative composition process, since part of the
goal of this work is to make composition more accessible in general. Interfaces will
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be developed and examined to free composition from the domain of experienced
composers. It should be noted that this does not introduce a limit on virtuosity,
and experienced and insightful artists should in no way be threatened by the
ability of amateur artists to explore and compose.

6
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Abstract. This paper focuses on the problem of constructing a reliable
pitch spelling algorithm—that is, an algorithm that computes the correct
pitch names (e.g., C4, Bb5 etc.) of the notes in a passage of tonal music,
when given only the onset-time, MIDI note number and possibly the du-
ration of each note. The author’s ps18 algorithm and the pitch spelling
algorithms of Cambouropoulos, Temperley and Longuet-Higgins were
run on a corpus of tonal music containing 1.73 million notes. ps13 spelt
significantly more of the notes in this corpus correctly than the other
algorithms (99.33% correct). However, Temperley’s algorithm spelt sig-
nificantly more intervals between consecutive notes correctly than the
other algorithms (99.45% correct). All the algorithms performed less
well on classical music than baroque music. However, ps!3 performed
more consistently across the various composers and styles than the other
algorithms.

1 Introduction

1.1 The Concept of a Pitch Spelling Algorithm

In this paper, I focus on the problem of constructing a reliable pitch spelling
algorithm—that is, an algorithm that reliably computes the correct pitch names
(e.g., C4, Bb5 etc.) of the notes in a passage of tonal music, when given only
the onset-time, MIDI note number and possibly the duration of each note in the
passage.

There are good practical and scientific reasons for attempting to develop a
reliable pitch spelling algorithm. First, until such an algorithm is devised, it will
be impossible to construct a reliable MIDI-to-notation transcription algorithm—
that is, an algorithm that reliably computes a correctly notated score of a passage
when given only a MIDI file of the passage as input. Second, existing audio
transcription systems generate not notated scores but MIDI-like representations
as output [1, 2, 3]. So, if one needs to produce a notated score from a digital
audio recording, a MIDI-to-notation transcription algorithm (incorporating a
pitch spelling algorithm) is required in addition to an audio transcription system.

Third, knowing the letter-names of the pitch events in a passage can be
extremely useful in music information retrieval and musical pattern discovery [4].

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 173-192, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Three perceptually similar patterns with different chromatic pitch inter-
val structures (from the first bar of the Prelude in C minor (BWV 871/1) from
Book 2 of J. S. Bach’s Das Wohltemperirte Clavier)

In particular, two occurrences of a motive on different degrees of a scale might be
perceptually similar even if the corresponding chromatic intervals in the patterns
differ. For example, the three patterns A, B and C in Fig. 1 are perceived as being
three occurrences of the same motive even though the corresponding chromatic
intervals are different in the three patterns. Note that, in this example, one
important aspect of the perceived similarity between patterns A, B and C is
nicely represented in the notation by the fact that they all have the same scale-
step interval structure (i.e., a downward step followed by two consecutive upward
steps). In other words, one result of the choice of pitch names for the notes in
this passage is that the scale-step interval structures are the same for these three
perceptually similar but chromatically different patterns. This illustrates the fact
that a correctly notated score is much more than simply a set of instructions
for the performer (cf. tablature). A correct Western staff notation score of a
passage of tonal music is a structural description of the piece that represents
certain important aspects of the way that the piece is intended to be perceived
and interpreted.

Matches such as the ones in Fig. 1 can be found using fast, exact-matching
algorithms if the pitch names of the notes are encoded, but exact-matching
algorithms cannot be used to find such matches if the pitches are represented
using just MIDI note numbers. If a reliable pitch spelling algorithm existed, it
could be used to compute the pitch names of the notes in the tens of thousands
of MIDI files of works that are freely available online, allowing these files to be
searched more effectively by a music information retrieval (MIR) system.

1.2 Pitch Spelling in Common Practice Western Tonal Music

In the vast majority of cases, the correct pitch name for a note in a passage of
tonal music can be determined by considering the réles that the note plays in
the harmonic, motivic and voice-leading structures of the passage. For example,
when played in isolation in an equal-tempered tuning system, the first soprano
note in Fig. 2(a) would sound the same as the first soprano note in Fig. 2(b).
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However, in Fig. 2(a), this note is spelt as a G because it functions as a leading
note in A minor; whereas in Fig. 2(b), the first soprano note is spelt as an Ab
because it functions as a submediant in C minor. Similarly, the first alto note in
Fig. 2(b) would sound the same as the first alto note in Fig. 2(c) in an equal-
tempered tuning system. However, in Fig. 2(b) the first alto note is spelt as an
Ff because it functions in this context as a subdominant in C minor; whereas,
in Fig. 2(c), the first alto note functions as a leading note in Ff minor so it is
spelt as an Ef.
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Fig. 2. Examples of enharmonic spelling (from [5, p. 8])

These examples illustrate that, in general, the pitch names assigned to notes
in a passage of tonal music are not arbitrary. In most cases, they are carefully
chosen so that the resulting score represents as well as possible certain important
aspects of the way that the music is intended to be perceived and interpreted.
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Fig. 3. Should the Ebs be spelt as Dis? (From [5, p. 390])

Of course, there do exist cases where it is difficult to determine the correct
pitch name of a note uniquely by considering the harmonic, motivic and voice-
leading structures of its context. For example, as Piston observes [5, p. 390], the
tenor Eb4 in the third and fourth bars of Fig. 3 should be spelt as a D4 if one
perceives the harmonic progression here to be TII? — I as proposed by Piston.
But spelling the soprano Eb5 in the fourth bar as D5 would not represent the
perceived structure of the melody correctly.
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1.3 Using Accurate Encodings of Authoritative Editions as a
‘Ground Truth’

Fortunately, however, cases such as the one in Fig. 3 where it is difficult to
determine the correct pitch name of a note are relatively rare—particularly in
Western tonal music of the so-called ‘common practice’ period (roughly the 18th
and 19th centuries). In the vast majority of cases, those who study and perform
Western tonal music agree about how a note should be spelt in a given tonal
context. Correspondingly, the vast majority of notes in authoritative published
editions of scores of common practice tonal works are generally agreed to be
spelt correctly by those who understand Western staff notation.

Therefore a pitch spelling algorithm can be evaluated quantitatively by run-
ning it on tonal works and comparing the pitch names it predicts with those
of the corresponding notes in authoritative published editions of scores of the
works. In other words, such authoritative scores can provide us with a ‘ground
truth’ that we can compare with the output of a pitch spelling algorithm.

However, this can only be done accurately and quickly if one has ac-
cess to accurate encodings of these authoritative scores in the form of com-
puter files that can be compared automatically with the pitch spelling algo-
rithm’s output. Currently there exist only a small number of publicly avail-
able collections of encodings of authoritative editions of musical scores (e.g.,
the MuseData collection (http://www.musedata.org) and the Mutopia Project
(http://www.mutopiaproject.org)). However, if real progress is to be made
in the development and testing of systems for music analysis, retrieval and
transcription, it is necessary for much larger and more varied corpora of en-
coded scores to be made publicly available (or at least available for research
purposes). Moreover, it is necessary for these corpora to be highly accurate. Un-
fortunately, building such corpora is currently an extremely time-consuming and
error-prone process despite the existence of, for example, optical music recog-
nition (OMR) systems (for an overview, see David Bainbridge’s web page at
http://www.cs.waikato.ac.nz/“davidb/omr/). There is therefore an urgent
need for tools and techniques that will allow notated scores to be encoded more
quickly and more accurately.

2 A Comparison of Three Pitch Spelling Algorithms

2.1 Introduction

In order to get a clearer idea of the ‘state of the art’ in the field, three pitch
spelling algorithms were run on two test corpora and their performance was
compared. The algorithms compared were those of Cambouropoulos [6, 7, 8, 9],
Longuet-Higgins [10, 11, 12] and Temperley [13, 14]. In an initial pilot study [15],
the corpus used was the first book of J. S. Bach’s Das Wohltemperirte Clavier*
(BWV 846-869), which contains 41544 notes. Then a larger-scale comparison

! This is Bach’s own spelling of the work’s title.
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was carried out using a corpus containing 1729886 notes and consisting of 1655
movements from works by 9 baroque and classical composers (Corelli, Vivaldi,
Telemann, Bach, Handel, B. Marcello, Haydn, Mozart and Beethoven). Both
corpora were derived from the MuseData collection of encoded scores [16].

2.2 Longuet-Higgins’s Algorithm

Pitch spelling is one of the tasks performed by Longuet-Higgins’s music.p pro-
gram [10, 11, 12]. The input to music.p must be in the form of a list of triples,
<p, ton, toff>’ each triple giving the “keyboard position” p together with the onset
time ton and the offset time ¢ g in centiseconds of each note. The keyboard po-
sition p is just 48 less than the MIDI note number. So, for example, the keyboard
position of middle C is 12. Longuet-Higgins intended the music.p program to
be used only on monophonic melodies and explicitly warns against using it on
“accompanied melodies” or what he calls “covertly polyphonic” melodies (i.e.,
compound melodies) [11, p. 114].

It is perhaps also worth pointing out that the pitch spelling algorithm
implemented in music.p does not use Longuet-Higgins’s well-known three-
dimensional ‘tonal space’ model of tonality [11, p. 110-111]. However, Longuet-
Higgins does actually describe this multi-dimensional model in the paper where
the music.p program is published. This has probably led some readers to assume
(incorrectly) that the program implements Longuet-Higgins’s three-dimensional
‘tonal space’ model. In fact, the only pitch spaces used in the pitch spelling al-
gorithm implemented in music.p are the circle of fifths and the ‘line of fifths’
(see Fig. 4).

- Ch Gh Db Ab Eb Bb F C G D A E B Ff Ct Gf Df Af Ef ---
Sharpness -+ -7 -6 =5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ---

Fig. 4. The line of fifths

The algorithm computes a value of “sharpness” for each note in the input
[11, p. 111]. The sharpness of a note is a number indicating the position of the
pitch name of the note on the line of fifths (see Fig. 4) [14, p. 117]. It is therefore
essentially the same as Temperley’s concept of tonal pitch class [14, p. 118] and
Regener’s concept of quint [17, p. 33].

Longuet-Higgins’s algorithm tries to spell the notes so that they are as close
as possible to the local tonic on the line of fifths [11, pp. 112-113]. The algorithm
assumes at the beginning of the music that the first note is either the tonic or the
dominant of the opening key and chooses between these two possibilities on the
basis of the interval between the first two notes [11, p. 114]. The algorithm also
disallows consecutive chromatic intervals [11, p. 113] and incorporates a special
rule for dealing with ascending semitones [11, p. 114].



178 David Meredith

2.3 Cambouropoulos’s Algorithm

The input to Cambouropoulos’s method [6, 7, 8, 9] is again a sequence of MIDI
note numbers in the order in which they occur in the music. The algorithm uses
a “shifting overlapping windowing technique” [9, p. 420], as illustrated in Fig. 5,
in which each window contains a certain number (typically 9 or 12) of contiguous
elements in the input sequence.

Fig. 5. Cambouropoulos’s own caption to this figure reads: “Shifting overlapping
window technique. For each window only the middle section of spelled pitches
(bold line) is retained. Dots represent the pitches of the input sequence.” (Re-
produced (with minor corrections) from [9, p. 420, Fig. 6].)

On each step, the window position advances by a third of the window size, as
shown in Fig. 5. Windowing improves the running time of the algorithm (from
exponential to linear in the size of the input) and overlapping the windows avoids
certain types of errors at window boundaries.

Cambouropoulos allows ‘white note’ pitch classes (i.e., 0, 2,4, 5, 7,9 and 11)
to be spelt in three ways. For example, pitch class 0 can be spelt as Bf, Cf or Dbb.
‘Black note’ pitch classes can be spelt in two ways. For example, pitch class 6 can
be spelt as Ff or Gb (see, for example, [6, p. 242]). Given these restricted pitch
name possibilities for each note, Cambouropoulos’s method computes all the
spellings for each window that do not contain both double-sharps and double-
flats. For example, for a 9-note window, 128 different spellings will have to be
evaluated.

A penalty score is then computed for each of these possible window spellings.
The penalty score for a given window spelling is found by computing a penalty
value for each pitch interval in the window and summing these interval penalty
values. A given interval in a particular window spelling is penalised more heavily
the less frequently it occurs in the major and minor scales, a principle that Cam-
bouropoulos calls interval optimization [9, p. 421]. An interval is also penalised if
either of the pitch names forming the interval is a double-sharp or a double-flat,
a principle that Cambouropoulos calls notational parsimony [9, p. 421]. For each
window, the algorithm chooses the spelling that has the lowest penalty score and
retains the pitch names for the middle third of this best window spelling.

2.4 Temperley’s Algorithm

Temperley’s pitch spelling algorithm [13, 14] is implemented in his harmony
program which forms one component of his and Sleator’s Melisma system. The
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input to the harmony program must be in the form of a “note-list” [14, pp. 9-
12] giving the MIDI note number of each note together with its onset time and
duration in milliseconds. This note list must be accompanied by a representation
of the metrical structure of the passage in the form of a “beat-list” of the type
generated by Temperley and Sleator’s meter program.

Temperley’s pitch spelling algorithm searches for the spelling that best satis-
fies three “preference rules” [14, pp. 115-136]. The first of these rules stipulates
that the algorithm should “prefer to label nearby events so that they are close
together on the line of fifths” [14, p. 125]. This rule bears some resemblance
to the basic principle underlying Longuet-Higgins’s algorithm (see above). The
second rule expresses the principle that if two tones are separated by a semitone
and the first tone is distant from the key centre, then the interval between them
should preferably be spelt as a diatonic semitone rather than a chromatic one [14,
p. 129]. This rule is also very similar to one of the rules used in Longuet-Higgins’s
algorithm. The third preference rule steers the algorithm towards spelling the
notes so that what Temperley calls a “good harmonic representation” results
[14, p. 131].

Note, however, that Temperley’s algorithm requires more information in its
input than the other algorithms. In particular, it needs to know the duration of
each note and the tempo at each point in the passage. It also needs to perform
a full analysis of the metrical and harmonic structure of the passage in order to
generate a high quality result. Also, it cannot deal with cases where two or more
notes with the same pitch start at the same time.

2.5 Results of Running Algorithms on the First Book of J. S. Bach’s
Das Wohltemperirte Clavier

Table 1 shows the results obtained in a pilot study in which the three algorithms
described above were run on the first book of J. S. Bach’s Das Wohltemperirte
Clavier [15]. As can be seen, Temperley’s algorithm performed best, followed by
Longuet-Higgins’s algorithm and then Cambouropoulos’s.

Table 1. Results obtained when the three algorithms were run on the first book
of J. S. Bach’s Das Wohltemperirte Clavier

Algorithm % motes correct Number of errors
Cambouropoulos 93.74 2599
Longuet-Higgins 99.36 265

Temperley 99.71 122

Total number of notes in corpus = 41544.

As mentioned above, Longuet-Higgins’s algorithm was not designed to be
used on polyphonic music. Therefore, before running this algorithm on the cor-
pus, each piece was first represented as a sequence of MIDI note numbers in the
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order in which they occur in the music. Within each set of note numbers cor-
responding to a set of notes beginning simultaneously, the elements were sorted
into increasing order by note number.

3 The ps13 Algorithm

3.1 Description of the Algorithm

Having carried out this pilot study and gained a better idea of the ‘state of
the art’ in the field, an attempt was made to construct a new algorithm that
improved on Temperley’s. Around 30 different algorithms were developed and
tested and the one that performed best on the first book of Bach’s Das Wohltem-
perirte Clavier will now be described. This algorithm is called ps13.2

The input to psI3 is, again, a sequence of MIDI note numbers in which the
ordering corresponds to the order in which the notes occur in the music, any set
of note numbers corresponding to notes that begin simultaneously being sorted
into increasing order by note number. This sequence of MIDI note numbers is
then converted into a sequence of pitch classes (if the MIDI note number of a
note is n, then the pitch class of the note is n mod 12). At the highest level of
description, ps13 can be broken down into two stages, which I shall call Stage 1
and Stage 2. In the following description, I denote by C' the ordered set of pitch
classes given to the algorithm as input. C[i] denotes the (i + 1)th element of C
(e.g., C[0] is the first element in C') and |C'| denotes the length of the sequence C'.

Stage 1 involves carrying out the following steps:

Step 1 For each 0 <14 < |C| and each pitch class 0 < p < 11, compute a value
CNT(i,p) giving the number of times that p occurs within a context
surrounding C'[i] that includes C[i], Kpre notes immediately preceding
Cli] and Kpyogt — 1 notes immediately following C[i]. Kpre is called the
precontext and Kpogt is called the postconteat.

Step 2 For each 0 < i < |C| and each pitch class 0 < p < 11, compute the
number of diatonic steps (mod 7), D(i,p), that there would be from the
tonic to the pitch name of C[i] if p were the pitch class of the tonic at
the point where C[i] occurs. (Assume that the notes are spelt as they
are in a harmonic chromatic scale whose tonic has pitch class p [21,
p. 78)).

Step 3 For each 0 < i < |C| and each pitch class 0 < p < 11, compute the value

D'(i,p) = (D(i,p) — D(0,p)) mod 7.

D’(i,p) gives the number of diatonic steps (mod 7) from the pitch name
of the first note (i.e., the note corresponding to C[0]) to the pitch name
of C[i] if the tonic pitch class is p.

2 Patent pending [18, 19, 20]. Please contact the author at dave@titanmusic.com if
you wish to use the algorithm. Permission will usually be granted for free use of the
algorithm for non-commercial purposes.
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Step 4 For each 0 < i < |C] and each diatonic interval 0 < d < 6, compute the
set of tonic pitch classes,

X(i,d) = {p| D'(i,p) = d}.

X (i,d) contains the tonic pitch classes that would lead to the diatonic
interval from the first note to C[i] being d.

Step 5 For each 0 < i < |C| and each diatonic interval 0 < d < 6, compute the
sum, N(i,d), of the values of CNT(é,p) for all the tonic pitch classes
p € X(i,d). That is,

N(i,d)= Y  CNT(i,p).

pEX (i,d)

Step 6 For each 0 < i < |C|, compute dmax (i), the value of d for which N (i, d)
is a maximum.

Step 7 Assign a letter name to the first note, C[0]. This can be done, for ex-
ample, by using the table below

Cl0] 01234567891011
Letter name of CO)CCDEEFFGAA B B

Step 8 For each 0 < i < |C|, make the letter name of the note correspond-
ing to C[i], dmax(?) steps above the letter name assigned to the note
corresponding to C[0].

The actual letter name assigned to the first note in Step 7 is not critical. It
might make the difference, for example, between a piece being spelt in Ab rather
than Gf but it would not change the pitch interval name of the interval between
any pair of notes in the piece. Clearly, if a correctly notated piece is transposed
up or down by a diminished second, the resulting piece will still be correctly
notated—it will just be written in a different key. In general, of course, the key
is chosen so as to minimise the number of sharps or flats in the key signature as
this is supposed to make the score easier to read. For example, a piece notated
in C major would generally be regarded as being easier to read than the same
piece notated in Bf major.

Stage 2 of the algorithm corrects those instances in the output of Stage 1
where a neighbour note or passing note is erroneously predicted to have the same
letter name as either the note preceding it or the note following it. That is, the
second stage of the algorithm corrects errors like those shown in Fig. 6.

In the first step of Stage 1, the algorithm essentially counts how many times
each pitch class occurs within some specified context surrounding a particular
note. Krumhansl [22, pp. 66-75] showed that there is a high correlation between
the frequency with which a pitch class occurs within a passage and its perceived
tonal stability as measured experimentally [23]. This suggests that the value
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Fig. 6. Examples of the types of passing and neighbour note errors corrected in
the second part of the ps13 algorithm

CNT(i, p), calculated in the first step of Stage 1, gives an approximate measure
of the perceived tonal stability of the pitch class p at the point in the music where
C[i] occurs. In ps13 the value CNT(i,p) is used as a measure of the likelihood
of p being perceived to be the tonic at the point where note C[i] occurs. Note
that, unlike Temperley’s algorithm, ps13 uses neither duration nor tempo and
can deal with situations where two or more notes with the same pitch start at
the same time.

3.2 Results of Running ps13 on the First Book of J. S. Bach’s Das
Wohltemperirte Clavier

In the first step of Stage 1, ps13 counts how many times each pitch class occurs
within some specified context surrounding a particular note, defined by the values
of Kpre and Kpost~ In order to explore the effect that varying the values of Kpre
and Kpost has on the performance of ps13, the algorithm was run 2500 times on
the test corpus, each time using a different pair of values for Kpre and Kposta
chosen so that both were between 1 and 50, inclusive. The image plot in Fig. 7
summarises the results obtained. It was found that ps13 made fewer than 122
mistakes (i.e., performed better than Temperley’s algorithm) on the test corpus
for 2004 (80.160%) of the 2500 { Kpre, Kpogt ) pais tested.

ps13 performed best on the test corpus when Kpre was set to 33 and Kpost
was set to either 23 or 25. With these parameter values, ps13 made only 81 errors
on the test corpus—that is, it correctly predicted the pitch names of 99.81% of
the notes in the test corpus. The mean number of errors made by psi3 over all

2500 <Kpre, Kpost> pairs was 109.082 (i.e., 99.74% of the notes were correctly

spelt on average over all 2500 <Kpre,Kpost> pairs). This average value was
better than the result obtained by Temperley’s algorithm for this test corpus
(see areas in Fig. 7 corresponding to scores greater than 99.71%). The worst
result was obtained when both Kpre and Kpogt were set to 1. In this case, ps13
made 1117 errors (97.31% correct). However, provided Kpre was greater than
about 13 and Kpogt was greater than about 16, ps15 predicted the correct pitch
name for over 99.71% of the notes in the test corpus.
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Fig. 7. Image plot showing percentage of notes spelt correctly by psi3 for all
values of Kpre and Kpog¢ between 1 and 50



184 David Meredith

4 Comparing the Algorithms on a Larger Corpus

4.1 Structure of the Larger Test Corpus

ps13 and the algorithms of Temperley, Cambouropoulos and Longuet-Higgins
were then run on a much larger corpus containing 1729886 notes and consisting
of 1655 movements from works by 9 baroque and classical composers (Corelli,
Vivaldi, Telemann, Bach, Handel, B. Marcello, Haydn, Mozart and Beethoven).
The values of Kpre and Kpost for ps13 were set to 33 and 23, respectively, these
being the values that produced the best results when the algorithm was run on
the smaller corpus in the pilot study. Table 2 shows the percentage and number
of notes in this larger test corpus in works by each composer.

Table 2. Number and percentage of notes in large corpus in works by each
composer

Composer Number of notes % of notes Cum. %

Corelli 31390 1.81% 1.81%
Vivaldi 223678 12.93% 14.74%
Telemann 89542 5.18% 19.92%
Bach 627083 36.25% 56.17%
Handel 449793 26.00% 82.17%
Marcello 2962 0.17% 82.34%
Haydn 84682 4.90% 87.24%
Mozart 172097 9.95% 97.19%
Beethoven 48659 2.81% 100.00%
Total 1729886

Table 2 reveals that more than 80% of the music in the corpus is baroque
and the rest is classical. So the corpus is not very stylistically varied—it contains
music written between about 1675 and 1825. Table 2 also shows that over 60%
of the corpus consists of works by Bach and Handel. Indeed, the corpus is very
unevenly distributed between the nine composers.

Unfortunately, a more varied and balanced corpus of a comparable size was
not available at the time this experiment was carried out.

4.2 Comparison of Algorithms with Respect to Number of Notes
Spelt Correctly

Table 3 shows the number of notes spelt incorrectly by each algorithm for each
composer in the corpus. The bottom row in this table gives the total number of
notes in the corpus spelt incorrectly by each algorithm.

Table 4 shows the percentage of notes spelt correctly by each algorithm for
each composer. The bottom row of this table shows the total percentage of notes
in the corpus spelt correctly by each algorithm. As shown in this table, overall,
the percentage of notes spelt correctly is largest for the ps13 algorithm.
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Table 3. The number of notes spelt incorrectly by each algorithm for each
composer

Cam LH psl3 Tem

Corelli 148 120 30 6
Vivaldi 1816 5518 1497 4900
Telemann 604 665 481 111
Bach 13347 13022 3450 1166
Handel 1929 3342 2339 1309

Marcello 1 4 14 5
Haydn 1497 6174 823 6391
Mozart 2300 10147 2250 19832
Beethoven 600 1703 727 6525
Complete test corpus 22242 40695 11611 40245

Table 4. Percentage of notes spelt correctly by each algorithm for each composer

Cam LH psl3 Tem
Corelli 99.53% 99.62% 99.90% 99.98%
Vivaldi 99.19% 97.53% 99.33% 97.81%
Telemann  99.33% 99.26% 99.46% 99.88%
Bach 97.87% 97.92% 99.45% 99.81%
Handel 99.57% 99.26% 99.48% 99.71%
Marcello  99.97% 99.86% 99.53% 99.83%
Haydn 98.23% 92.71% 99.03% 92.45%
Mozart 98.66% 94.10% 98.69% 88.48%
Beethoven 98.77% 96.50% 98.51% 86.59%
Complete test corpus  98.71% 97.65% 99.33% 97.67%

McNemar’s test [24, 25] was then used to determine whether the differences
between the scores achieved by the algorithms were statistically significant.?
McNemar’s test is essentially a chi-squared test for related samples. Let’s denote
by Sar and Sp 1 the percentages of notes spelt correctly by algorithms A and
B, respectively, when they are run on a test corpus 7T'. Let us further assume that
Sar > Sp,r. McNemar’s test can be used to estimate the probability (p-value)
of getting results at least as different as S4 7 and Sp 7 if there would actually be
no difference between the percentage of notes spelt correctly by A and B if they
were run on the population from which 7" was taken. The first step in computing
this p-value is to compute the values n;., the number of notes incorrectly spelt
by A but correctly spelt by B; and n.;, the number of notes correctly spelt by
A but incorrectly spelt by B. If A and B would actually perform equally well
on the whole population, then we expect n.; to be equal to n;.. McNemar’s test
assumes that the expected values of n.; and n;. are both equal to (ng + n;.)/2
and compares the observed values of n.; and n;. with this expected value. An
estimate of x? is then obtained using the following formula

2 _ (Inic = neil = 1)?
Nic +nci

The results of this analysis are shown in Table 5. In this table, each value in a
column headed ‘p-value’ gives the statistical significance (expressed as a proba-

3 1 am grateful to Marcus Pearce for suggesting the use of McNemar’s test.
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bility computed using McNemar’s test) of the difference in performance between
the algorithms to the left and right of the value in the table. For example, the
value in the seventh column and first row of Table 5 indicates that if the algo-
rithms of Longuet-Higgins and Cambouropoulos would actually make an equal
number of note errors when run over the whole population of works represented
by the test corpus, then the probability of getting a difference in scores at least
as great as that observed in this study would be 0.0765. The bottom row of
this table shows that, overall, ps13 spelt very significantly more notes correctly
than Cambouropoulos’s algorithm (p < 0.0001), which in turn spelt very signifi-
cantly more notes correctly than Temperley’s algorithm (p < 0.0001). However,
the percentage of notes spelt correctly by Temperley’s algorithm (97.67%) and
Longuet-Higgins’s algorithm (97.65%) did not differ significantly (p = 0.0954).
(A difference is considered significant if p < 0.05.)

Table 5. Statistical significance of differences between note error rates of algo-
rithms for each composer and for complete corpus, measured using McNemar’s
test

Composer Best p-value 2nd best p-value 3rd best p-value Worst

Corelli Tem < 0.0001 psl3 < 0.0001 LH 0.0765 Cam

Vivaldi ps13 < 0.0001 Cam < 0.0001 Tem < 0.0001 LH

Telemann Tem < 0.0001 psl3 < 0.0001 Cam 0.0736 LH

Bach Tem < 0.0001 psl3 < 0.0001 LH 0.0352 Cam

Handel Tem < 0.0001 Cam < 0.0001 psl3 < 0.0001 LH

Marcello Cam 0.1797 LH 0.7388 Tem 0.0389 psl3

Haydn psl13 < 0.0001 Cam < 0.0001 LH 0.0348 Tem

Mozart psl3 0.3665 Cam < 0.0001 LH < 0.0001 Tem

Beethoven Cam < 0.0001 psl3 < 0.0001 LH < 0.0001 Tem

Complete test corpus psl3 < 0.0001 Cam < 0.0001 Tem 0.0954 LH

The graph in Fig. 8 shows the percentage of notes spelt correctly by each
algorithm for each composer, the composers being placed along the horizontal
axis in increasing chronological order of birth. This graph suggests that the
algorithms of Temperley and Longuet-Higgins perform significantly worse on the
classical composers (Haydn, Mozart and Beethoven) than they do on the baroque
composers. The graph also suggests that ps13 performs more consistently across
the different composers and styles than the other algorithms.

4.3 Comparison of Algorithms with Respect to Number of Intervals
Spelt Correctly

When the lists of errors generated by the algorithms were examined, it was
observed that, in some cases, many errors were the result of large segments
of the music simply being transposed up or down by a diminished second. In
other words, a single incorrect interval between two consecutive notes in the
input representation resulted in a whole segment of notes following the incor-
rect interval being spelt incorrectly. The algorithms were therefore also compared
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with respect to the number of intervals spelt correctly between consecutive notes
in the input representations. Table 6 shows the number of intervals between
consecutive notes in works by each composer in the corpus.

The graph in Fig. 9 shows the percentage of intervals between consecutive
notes spelt correctly by each algorithm for each composer, the composers being
placed along the horizontal axis in increasing chronological order of birth. From
this graph it is clear that the algorithms of Longuet-Higgins and Temperley
were better at spelling intervals between consecutive notes correctly than they
were at spelling notes correctly. In particular, this graph shows that most of the
note spelling errors made by Longuet-Higgins and Temperley’s algorithms on
the music of Haydn, Mozart and Beethoven were due to whole segments being
spelt a diminished second away from the correct spelling.
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Again, the statistical significance of the differences between the performances
of the algorithms were analysed using McNemar’s test and the results are shown
in Table 9. The bottom line of this table reveals that, with respect to the number
of intervals spelt correctly, Temperley’s algorithm performs significantly better
on this test corpus than the other three algorithms.

Nonetheless, the graph in Fig. 9 suggests that, even in terms of the number of
intervals spelt correctly, all the algorithms perform worse on the classical music
than on the baroque music.

Table 7 shows the percentage of intervals spelt correctly by each algorithm
for each composer and Table 8 shows the number of intervals spelt incorrectly
by each algorithm for each composer.
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Table 6. The number of intervals between consecutive notes in the input rep-
resentations in works by each composer in the test corpus

Corelli Vivaldi Telemann Bach Handel Marcello Haydn Mozart Beethoven Complete
31302 223516 89385 626439 449292 2959 84648 172041 48649 1728231

Table 7. Percentage of intervals between consecutive notes in the input repre-
sentations spelt correctly by each algorithm for each composer

Cam LH psl3 Tem
Corelli 99.08% 99.71% 99.81% 99.96%
Vivaldi 99.08% 99.43% 99.13% 99.58%
Telemann  99.19% 99.50% 99.12% 99.77%
Bach 97.97% 99.07% 99.28% 99.67%
Handel 99.44% 99.62% 99.55% 99.82%
Marcello  99.93% 99.73% 99.12% 99.73%
Haydn 97.93% 97.99% 98.47% 98.13%
Mozart 98.49% 98.41% 98.28% 98.33%
Beethoven 98.49% 98.41% 98.57% 98.08%
Complete test corpus  98.65% 99.16% 99.17% 99.45%

Table 8. Number of intervals between consecutive notes in the input represen-
tations spelt incorrectly by each algorithm for each composer

Cam LH psl3 Tem

Corelli 288 92 60 12
Vivaldi 2064 1264 1937 941
Telemann 727 450 788 204
Bach 12697 5852 4507 2074
Handel 2518 1703 2030 822

Marcello 2 8 26 8
Haydn 1750 1700 1298 1579
Mozart 2596 2734 2955 2874
Beethoven 736 772 695 933
Complete test corpus 23378 14575 14296 9447

Table 9. Statistical significance of differences between interval error rates of al-
gorithms for each composer and for complete corpus, measured using McNemar’s
test

Composer Best p-value 2nd best  p-value  3rd best p-value Worst

Corelli Tem < 0.0001 psl3 0.0068 LH < 0.0001 Cam
Vivaldi Tem < 0.0001 LH < 0.0001 psl3 0.1077 Cam
Telemann Tem < 0.0001 LH < 0.0001 Cam 0.0029 psl3
Bach Tem < 0.0001 psl3 < 0.0001 LH < 0.0001 Cam
Handel Tem < 0.0001 LH < 0.0001 psl3 < 0.0001 Cam
Marcello Cam 0.0577, 0.0577 LH,Tem 0.001, 0.002 psl3

Haydn ps13 < 0.0001 Tem 0.0028 LH 0.2416 Cam
Mozart Cam 0.0584 LH 0.0143 Tem 0.2459 psl3
Beethoven psl3 0.041 Cam 0.0252 LH < 0.0001 Tem

Complete test corpus Tem < 0.0001 psl3 0.0637 LH < 0.0001 Cam
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5 Conclusions and Further Work

This paper presents the results of a study in which four pitch spelling algorithms
were compared on a large corpus of tonal music. The algorithms compared were
those of Cambouropoulos, Temperley and Longuet-Higgins, together with the
author’s own psi3 algorithm. When the algorithms were evaluated in terms
of the number of notes in this corpus that they spelt correctly, it was found
that the author’s ps13 algorithm performed significantly better than the other
algorithms, correctly spelling 99.33% of the notes in the corpus correctly. While
all four algorithms performed well on the baroque music in the test corpus, it was
found that the algorithms that were directly based on the circle of fifths (i.e.,
those of Temperley and Longuet-Higgins) performed less well than the other
algorithms on the classical music in the corpus. However, when the algorithms
were evaluated in terms of the number of intervals between consecutive notes
spelt correctly, it was found that all the algorithms performed very well across
all styles, with Temperley’s algorithm performing best, correctly spelling 99.45%
of the intervals in the corpus correctly.

It would be interesting to extend this study by doing further comparisons be-
tween the algorithms described here and other algorithms such as the real-time
algorithms of Chew and Chen [26] and also the algorithms implemented in com-
mercial music notation programs such as Sibelius (http://www.sibelius.com)
and Finale (http://www.finalemusic.com). These algorithms should also be
tested on other corpora containing works in a wider variety of tonal styles in-
cluding, for example, romantic, impressionist, rock and jazz music.

Krumhansl [22, p. 79] claims that “once a key (or key region) has been deter-
mined, the correct spellings of the tones will be able to be determined in most
cases”. ps13 and the algorithms of Temperley and Longuet-Higgins all perform
something at least very much like key finding as part of the pitch-spelling pro-
cess. However, these algorithms give different results when run on the same test
corpora. This demonstrates that there are various plausible ways of using the
key-structure of a passage to determine pitch names and it is not at all obvi-
ous which of these methods will give the best results. Krumhansl’s claim needs
to be tested by building complete pitch spelling algorithms based on various
key-finding algorithms and comparing the performance of these algorithms with
others such as those described in this paper.

Finally, the errors made by the algorithms in the experiments described above
need to be analysed in more depth in order to determine if any further improve-
ments can be made.
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Abstract. In this paper we present algorithms for the automatic time-
synchronization of score-, MIDI- or PCM-data streams which represent
the same polyphonic piano piece. In contrast to related approaches, we
compute the actual alignment by using note parameters such as onset
times and pitches. Working in a score-like domain has advantages in
view of the efficiency and accuracy: due to the expressiveness of score-
like parameters only a small number of such features is sufficient to
solve the synchronization task. To obtain a score-like representation from
the waveform-based PCM-data streams we use a preprocessing step to
extract note parameters. In this we use the concept of novelty curves
for onset detection and multirate filter banks in combination with note
templates for pitch extraction. Also the data streams in MIDI- and score-
format have to be suitably preprocessed. In particular, we suggest a data
format which handles possible ambiguities such as trills or arpeggios
by introducing the concept of fuzzy-notes. Further decisive ingredients
of our approach are carefully designed cost functions in combination
with an appropriate notion of alignment which is more flexible than the
classical DTW concept. Our synchronization algorithms have been tested
on a variety of classical polyphonic piano pieces recorded on MIDI- and
standard acoustic pianos or taken from CD-recordings.

1 Introduction

Modern digital music libraries consist of large collections of documents contain-
ing music data of diverse characteristics and formats. For example, for one and
the same piece of music, the library may contain the corresponding score in the
Capella or Score format, as MIDI-files, and several interpretations by various
musicians as CD recordings. Inhomogeneity and complexity of such music data
make content-based browsing and retrieval in digital music libraries a difficult
task with many yet unsolved problems. One important step towards a solution
are synchronization algorithms which automatically align data streams of differ-
ent data formats representing a similar kind of information. In particular, in the
framework of audio by synchronization we mean a procedure which, for a given
position in some representation of a given piece of music (e.g., given in score for-
mat), determines the corresponding position within some other representation
(e.g., given in PCM-format).

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 193-210, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Such synchronization algorithms have applications in many different scenar-
ios: following score-based music retrieval, linking structures can be used to access
a suitable audio CD accurately to listen to the desired part of the interpretation.
A further future application is the automatic annotation of a piece of music in
different data formats to support content-based retrieval and browsing. As an-
other example, musicologists can use synchronizations for the investigation of
agogic and tempo studies. Furthermore, temporal linking of score and audio
data can be useful for a reading aid of scores.

In the following, we concentrate on three widely used formats for representing
music data: the symbolic score format contains information on the notes such as
musical onset time, pitch, duration, and further hints concerning the agogic and
dynamics. The purely physical PCM-format encodes the waveform of an audio
signal as used for CD-recordings. The MIDI-format may be thought of as a hybrid
of the last two data formats containing content-based information on the notes
as well as agogic and dynamic niceties of some specific interpretation. These
different data formats lead to various synchronization problems as illustrated by
Figure 1.

Score
SM SP
RN &

MM MIDI < — PCM PP

Fig.1. Overview on various synchronization problems.

In this paper we concentrate on the case of Score-PCM (SP) synchronization
where one data stream is given in a score-like format (in this case the note
parameters are explicitly available) and the other data stream is given in the
PCM-format. The other cases such as SM- or MP-synchronization are even easier
or can be done in a similar fashion (see [1]).

As will be discussed in Section 2 there are various strategies to make the score-
like data stream comparable to the PCM-data stream. In all approaches the data
streams are divided up into sequences of frames which are aligned by techniques
of dynamic time warping (DTW). Since the memory requirement as well as
the running time of this approach is at least proportional to the product of the
lengths of the two sequences to be aligned, efficiency becomes an important issue.
Therefore, in contrast to the approaches described in [17,18], we suggest to use
score-like features such as onset times and pitches for the alignment process. Due
to the expressiveness of such note parameters only a small number of features is
sufficient to solve the synchronization task. Furthermore, a very good temporal
accuracy of the alignment can be achieved.
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The major problem with this approach is that a PCM-data stream does not
explicitly contain information on the notes. Therefore, in a preprocessing step,
we first extract information such as note onsets and pitches from the PCM-
recording in order to make it comparable in the score-like domain. However, the
extraction of note information from the waveform of polyphonic music consti-
tutes an extremely difficult problem which is solved only for a few special cases
(see also Section 2). Especially, in the most general case of orchestral music the
extraction problem (not to mention the transcription problem) is a largely open
problem which seems to be unfeasible. In our research, we have concentrated
on polyphonic piano music. In contrast to many other research projects we do
not restrict ourselves to PCM-data generated by MIDI-pianos. Instead we al-
low PCM-data generated by any acoustic piano, e.g., music data from a piano
CD. This in general extremely complex data leads to many erroneous extraction
results which would not be acceptable when treated as a transcription into a
score-like format of the original piece of music. However, the extracted data —
even from complex piano pieces — is good enough to ensure success in view of
the synchronization problem.

One major problem in Score-PCM synchronization results from the fact that
the score is just a description of the piece of music which leaves a lot of room
for various interpretations not only concerning the tempo and dynamics but also
concerning the notes itself. To cope with ambiguities in the score, such as trills,
arpeggios, or grace notes, we introduce the concept of fuzzy-notes which allows
a set of alternative notes in the alignment process. Furthermore, concerning
the PCM-based interpretation one often has to deal with wrong, additional, or
missing notes. Using classical DTW-based approaches for the alignment, as e.g.
described in [13,17,18], matches are forced by the local constraints imposed on
the warping paths — even in regions where there are no equivalent events in
the score- and PCM-data streams. From our experiments we conclude that it
is preferable to avoid such kinds of matches rather than having “erroneous”
matches. To this means, we introduce a more general notion of a so-called Score-
PCM match which allows to skip notes and whole regions, in which the PCM-
version differs considerably from the score.

The rest of this paper is organized as follows. In Section 2, we discuss recent
approaches to Score-PCM synchronization and briefly review some literature
related to the extraction and transcription problem. Then, in Section 3, we sum-
marize our system for the extraction step of musically relevant parameters from
PCM-data streams. The actual synchronization algorithms, based on a carefully
designed cost function, are described in Section 4. Finally, Section 5 contains an
examples, Section 6 summarizes some of our experiments, and Section 7 closes
with concluding remarks and possible future research directions.

2 Background and Related Work

The synchronization problem in music and in particular the related problems of
automatic score following and automatic music accompaniment has been a re-
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search field for many years. Dannenberg et. al. describe in [3] and [4] one of the
first algorithms for automatic music accompaniment reducing the synchroniza-
tion problem to an LCS (longest common subsequence) problem which is solved
using dynamic programming. Raphael [14] has developed a system for automatic
musical accompaniment of an oboe based on Hidden Markov Models. Desain et.
al. describe in [5] a general sequential and tree-based score-performance matching
algorithms. A similar problem addresses Large in [9] using dynamic programming
to study music production errors. In all of those approaches the data streams
involved in the synchronization problem either explicitly contain score-like note
parameters or only consist of monophonic music so that the note parameters
are comparatively clean and error free. In our scenario, however, we also allow
PCM-data of complex polyphonic piano music with no such explicit and clean
parameters. Further links may be found in the overview article [12]. In the fol-
lowing, we discuss two recent contributions by Turetsky et al. [18] and by Soulez
et al. [17] which also address the problem of Score-PCM synchronization.

To make the data sequences comparable, Turetsky et al. [18] first convert the
score-like version (given as MIDI data stream) into a PCM-data stream using a
suitable synthesizer. Then, the two PCM-data streams are analyzed by means
of a Short-Time-Fourier Transform (STFT) which in turn yields a sequence of
suitable feature vectors. A pairwise comparison of those feature vectors with
respect to a suitable local distance measure is used to compute a cost matrix.
Based on this matrix, the best alignment is derived by means of dynamic time
warping. As reported in [18], good synchronization results are achieved in the
case of commercial pop music. In this genre, one generally has a relatively con-
stant tempo and also a clear rhythm resulting in regular patterns in the spectral
domain. Actually, Turetsky et al. convert the Score-PCM synchronization prob-
lem into a PCM-PCM synchronization problem — in the alignment process the
note parameters given by the score-data stream are not used. On the one hand
this makes their algorithm applicable for synchronizing arbitrary types of mu-
sic. On the other hand, when dealing with e.g. classical music, where one can
have strong local time deviations and only small spectral variations, algorithms
relying solely on the comparison of the spectral information of the underlying
PCM-data streams will lead to significant synchronization error rates.

In the approach of Soulez et al. [17] the score-data stream is used to gen-
erate a sequence of attack-, sustain- and silence models corresponding to note
onsets, pitches and rests. As in [18], the PCM-data stream is converted into
a sequence of spectral vectors using a STFT. Based on suitably defined local
distance measures, which allow a comparison between the note models and the
spectral vectors, a cost matrix is computed. Again dynamic time warping is ap-
plied to derive the alignment. In contrast to [18], Soulez et al. explicitly use the
note parameters such as onset times and pitches in the synchronization process
which results in a more robust algorithm w.r.t. local time deviations and small
spectral variations.

Both approaches [17] and [18] have the following drawbacks due to the STFT
used for the analysis of the PCM-data stream. Firstly, the STFT computes
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spectral coefficients which are linearly spread over the spectrum resulting in a
bad resolution of low frequencies. Therefore, in the case of low notes one has
to rely on the harmonics. This is problematic in polyphonic music where one
often has the situation that harmonics and fundamental frequencies of different
notes coincide. Secondly, in order to obtain a satisfying time resolution one has
to work with a relatively large number of feature vectors on the PCM-side.
(For example, even with a rough time resolution of 46 ms as suggested in [18]
these are more than 20 feature vectors per second.) This leads to huge memory
requirements as well as long running times in the DTW computation, which
are both proportional to the product of the lengths of the two sequences to be
aligned.

As mentioned in the last section, the extraction problem of score-like note
parameters from waveform-based PCM-data itself constitutes an active research
area with many yet unsolved problems. We only give a small choice of relevant
literature where the reader finds further links. As an example, we mention the
approach of Raphael [15] who uses Hidden Markov Models to transcribe poly-
phonic piano music. Klapuri et. al. [10] use moving-average techniques to extract
note pitches in polyphonic musical signals. As is also mentioned by the authors,
the extraction of such parameters in polyphonic music still leaves a lot of work
to do. Foote [6] uses the concept of the so-called novelty score to automatically
segment audio recordings. In Section 3 we use a similar technique to extract
candidates of onset times. Bobrek et. al. [2] use filter bank techniques in com-
bination with note templates for the transcription of polyphonic piano music.
We have modified their approach to extract the pitches of the previously deter-
mined onset candidates. Finally, we want to mention the comprehensive book
[11] by Mazzola who gives, among many related topics, a detailed account on
local tempo variations resulting from expressiveness in performances.

3 Feature Extraction

In this section we summarize our system for extracting note parameters from the
PCM-data stream. Using several established tools from audio signal processing,
our main contributions are a refined template matching algorithm for polyphonic
pitch extraction and a two-step algorithm for note onset detection.

Figure 2 shows the overall feature extraction algorithm. An input PCM-
signal is transformed to a subband representation using a multirate filterbank.
Simultaneously, a two-stage peak-picking algorithm detects probable note on-
set positions. According to those onset positions, the subband representation is
split into time intervals. For each interval, we calculate an energy vector with
components corresponding to the subbands: each component contains the total
energy within the interval of the respective subband. Then, for each energy vec-
tor a pitch extraction based on a template matching algorithm is performed. The
pitch extraction yields a set of notes for the corresponding time interval. The
feature extraction algorithm outputs a note object for each note in each time
interval, where a note object consists of an onset time and a pitch information.
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Fig. 2. Diagram of the feature extraction algorithm.

We now briefly discuss the components of our algorithm. For onset detection,
we first calculate a novelty' curve of the input signal. This step basically consists
of a STFT with a step size of 23 ms, where for each step a novelty value is cal-
culated by summing over the absolute changes of the last two steps’ magnitude
spectra. Peaks in the resulting novelty curve constitute candidate onset times.
As the time-resolution of 23 ms is very rough, a postprocessing of all candidate
onset-times is performed based on linear prediction. In linear predictive coding
(LPC), the harmonic parts of a signal segment are summarized in a few pre-
diction coefficients which may in turn be used to predict the short-time signal
behavior. A method proposed in [7] compares ratios of prediction errors resulting
from crossover predictions of neighboring signal segments to detect significant
signal changes. We adopt this method to increase the time resolution of our
candidate onset times to about 10 ms. For a detailed account we refer to [1].

The simultaneously applied subband filterbank transforms the input signal
into M = 224 subband signals. The filterbank is realized by a tree structured
cascade of orthogonal 2-band filterbanks. The tree structure of the filterbank
— and hence the frequency ranges of the subbands — are chosen such that the
fundamental frequency of at most one piano note (well-tempered tuning) falls
into one subband. This guarantees that in the subsequent template matching
algorithm templates can be uniquely assigned to energy vectors. For further
details on the filter bank tree structure we refer to [2].

For pitch detection, template matching is performed w.r.t. a template data
base (TDB) consisting of one template for each musical note. A template is an
M-point vector representing the energy distribution of a certain note over the
above subbands. The templates were recorded using a Yamaha GranTouch E-
Piano. We furthermore evaluated templates generated by two acoustic pianos
(Steinway and Schimmel). However, the E-Piano’s templates turned out to be
the most robust for our purposes.

! We adopted the term novelty from [6] even though our definition of nowvelty curve
does only conceptually correspond to the one used by Foote.
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Starting with an initial energy vector, our template matching algorithm
roughly tries to select a template from the TDB which optimally fits the energy
vector w.r.t. a certain criterion. If successful, a corresponding energy fraction is
subtracted from the energy vector to yield a modified vector, which is used to
recurse the procedure until the remaining residual energy falls under a specified
lower bound. We used the following criterion for selecting a template which op-
timally fits an energy vector £ € RM: find the lowest subband index k such that
E(k) > (¢/M) Zf‘il |E(i)] (for a suitable prior constant c¢). If such a k exists,
search the TDB for a template Sj; with fundamental frequency in this subband.
If E contains Sy, to a significant extent, select Sy as a matching template. In [2]
the authors, instead of using the lowest significant subband, choose the subband
containing the highest energy component for selecting the template. However, in
our experiments this criterion turned out to yield several octave interval errors
in pitch detection, especially when applied to recordings from acoustic pianos.

To conclude this section we note that our algorithms require a careful choice
of parameters (e.g., thresholds for template extraction, peak picking, or the
minimum inter-onset interval). A detailed discussion is beyond the scope of this
paper. For further details, we refer to [1].

4 Synchronization Algorithms

In this section we describe the actual synchronization algorithms. Due to space
limitation, we only consider the case of a score- and a PCM-data stream (SP-
synchronization). The other cases such as SM- or MP-synchronization are even
easier or can be done in a similar fashion (see [1]).

First, we discuss how to preprocess the score data which is assumed to exist
in electronic form (e.g., as a file in the Capella format). We distinguish between
two kinds of note objects: explicit and implicit ones. For explicit objects all note
parameters such as measure, beat, duration, and pitch are given explicitly. In
view of the synchronization algorithm we only use the musical onset time and
pitch. We represent each explicit note object by a tuple (e,p) € Q x [0 : 127],
where [a : b] := {a,a + 1,...,b} for integers a and b. Here, we identify a pitch
with the corresponding MIDI pitch given by an integer between 0 and 127.
Furthermore, the musical onset time e € Q is computed by e =r - (m — 1) + b if
the piece of music has r beats per measure, where m € N and b € Q denote the
measure and beat respectively of the explicit note object. For example, the first
and fourth explicit note object in the right hand of the Aria (Fig. 3) are given
by (0,79) and (2.75, 83) respectively.

By an implicit note object we understand notes or a group of notes with
an additional specification such as a trill, an arpeggio or grace notes. Implicit
objects allow different realizations, depending on the epoch and the actual in-
terpretation. To get this ambiguity under control we introduce the concept of a
fuzzy note. A fuzzy note is defined to be a tuple (e, H) consisting of an onset
time e € Q and a set of alternative pitches H C [0 : 127]. Then an implicit note
object, such as a trill, is represented by the musical onset time of a certain main
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Fig. 4. Appoggiatura and trill, (a) notation, (b) possible realization, (c) fuzzy
note, (d) encoding.

note and the set of all pitches appearing in a possible realization of this object
(see Fig. 4 for an illustration). For example, the third note object of the first
measure in the right hand of the Aria (Fig. 3) is given by (3,{79,81}).

Using this encoding we may assume that a score is given by a subset S C
Q x 2001271 5 2[0:127] " where 2091271 denotes the set of all subsets of [0 : 127].
Here, in a triple (e, Ho, Hy) € S the subset Hy C 2927 consists of all pitches
of explicit note objects having musical onset time e and similarly the subset
Hy c 209127 consists of all pitches of implicit note objects having musical onset
time e.

We now turn to the data stream given in PCM-format. As described in
Section 3, we extract a set of possible candidates of note objects given by their
physical onset times and pitches (including in general erroneous objects). In
view of the synchronization it is useful to further process this extracted data by
quantizing the onset times. Simply speaking, we pool all note objects by suitably
adjusting those physical onset times which only differ by some small value —
e.g., smaller than a suitably chosen A > 0 — since these note objects are likely
to have the same musical onset time in the corresponding score format. After
quantization we also may assume that the extracted PCM-data is given by a
subset Py C Q x 2[%127] Note that in the PCM-case there are only explicit note
objects.
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Altogether, we may assume that the score and the A-quantized extracted
PCM-data are given by the sets

S =[(51,501,511)s - - -+ (85,55, 515)] and  Pa = [(p1,Po1),- -, (0p, Pop)]-

Here, the s;, 1 < ¢ < s, denote the musical onset times and the p;, 1 < j < p,
denote quantized physical onset times. Furthermore, So;, S1;, Py; C [0 : 127] are
the respective sets of pitches for the explicit and implicit objects.

On the basis of S and Py we now accomplish the SP-synchronization. Since
the score and the PCM-data represent the same piece of music, it is reasonable
to assume s; = p; = 0 by possibly shifting the onset times. Now, the goal is to
partially link the onset times s1,...,ss to p1,...,p, by maximizing the matches
of the corresponding pitch sets. In the following, we formalize this approach.

Definition 1. A score-PCM-match (SP-match) of S and Pa is defined to be a
partial map p:[1:s] — [1: p], which is strictly monotonously increasing on its
domain satisfying (Soi U S1:) N Pousy # O for all i € Domain(p).

This definition needs some explanations. The fact that objects in .S or Po may
not have a counterpart in the other data stream is modeled by the requirement
that p is only a partial function and not a total one. The monotony of i reflects
the requirement of faithful timing: if a note in S precedes a second one this also
should hold for the p-images of these notes. Finally, the requirement (Sp; U.S1;)N
Pouiy # () prevents that onset times are linked which are completely unrelated
with respect to their pitches.

Obviously, there are many possible SP-matches between S and Py. By means
of a suitable cost function we can compare different matches. The goal is then to
compute an SP-match minimizing the cost function. To simplify the notation we
identify the partial function p with its graph Graph(u) := {(i1, 1), -, (i¢, je) },
where {i; < -+ < i} C[1:s] and {j1 = p(i1) < -+ < joe = u(ie)} C[1: p|.
In the following definition we assign costs to each SP-match . In this, we make
use of a parameter vector m := (a,3,7,0,(,A) € Rgo consisting of six real
parameters which will be specified later. B

Definition 2. With respect to the parameter vector © == (o, 3,7,0,(, A) € RS,

the SP-cost of an SP-match p between a score S and a A-quantized set Px of
the corresponding PCM-document is defined as

CEP(ulS, Pa) = a- Z <\50z' \ Poj| + A(Z',j))

(4,) €

8- 3 (1P \ (Sos U S1)| + i, ))

(i,5)€ER

> (|50k|+a<k>)+5~ > 1Pl
k¢ZDomain(u) tZImage(p)

D s ep)|.

(4,)€ER
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This definition also requires some explanations. The sum corresponding to
the factor a represents the cost of the non-matched explicit and implicit note
objects of the score S. To be more accurate, the cardinality |So; \ Fo;| measures
the cost arising from the difference of the set of explicit note objects at the ith
onset time of S and the set of explicit quantized note objects at the jth onset
time of Pa. Furthermore, A(4, ) is defined to be 1 if and only if the score S has an
implicit note object at the ith onset time and Pa has no counterpart at the jth
onset time, i.e., S1; # () and S1;NPy; = 0. In all other cases A(4, j) is defined to be
0. Next, we consider the sum corresponding to the factor 3. The first summand
in the brackets measures the cost of (possibly erroneously) extracted notes at
the jth physical onset time whose pitches do not lie in Sp; U Sy;. Furthermore,
p(i,7) is defined to be |Py; NS1;| — 1 if Py; N S1; # 0. Otherwise p(4, j) is defined
to be 0. In other words, for the implicit note objects only one match is free of
cost whereas each additional match is penalized. (This is motivated by the idea
that all notes belonging to a realization of a fuzzy note are expected to have
pairwise distinct physical onset times.) The sum corresponding to v accounts for
all onset times of the score which do not belong to the match p. The first term
within the brackets counts the number of explicit note objects at the kth onset
time, k ¢ Domain(u). Furthermore, o(k) is defined to be 1 if there is a non-
matched implicit note object and 0 if there is no implicit note object at the kth
onset time. (The idea is that a non-matched fuzzy note should only be penalized
by 1 since it only represents a set of alternatives.) The sum corresponding to
6 accounts for the cost of those notes in Po which do not have a counterpart
in S. Finally, the last sum corresponding to ¢ measures an adjusted £!-distance
(also known as Manhattan-distance) of the vector pairs (s, p;)(i,;)eu, where £(.S)
and ¢(P) denote the differences of the last and the first musical respectively
physical onset times (a kind of musical and physical duration). By this sum
one penalizes matches with large relative time deviations thus preventing large
global deviations in the synchronization.

In the following we fix a parameter vector m, a preprocessed score S, and
quantized extracted PCM-data Pa. Note that if g is an SP-match then also
w = p\{(,7)} for some (i,5) € p. An easy computation shows

CSP (]S, Pa) = CSP (118, Pa) = - (1S0i \ Pos| + AGG, ) )
+6 (1P \ (S0: U S10) | + 9. )
—y+ (180l + () = 6 - 1P|
¢+ |si—p; - us)/0P)

Now, one can determine a cost-minimizing SP-match by means of dynamic
programming. We recursively define a matrix C' = (¢;;) with ¢ € [0 : s] and
j € [0 : pl. First, initialize coj 1= c;o := CSF (0] S, Pa) for alli € [0: s],7 € [0 : p].
Note that this accounts for the costs that there is no match at all between S and

PA. At position (4,7) € [1: s] x [1 : p|] the value ¢;; expresses the cost for a cost-
minimizing SP-match within the subset [1 :4] x [1:j] C[1:s] x [1: p]. Hence,

(1)
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csp expresses the minimal cost of a global SP-match. For (4, j) € [1: s] x [1: p],
the value ¢;; is defined as

— mi sp
cij = min{c; j1,¢im1j, Cim15-1 + d3 }
where

4P right hand side of Eq. (1), if (So; U S1;) N Poj # 0,
o0, otherwise.

Using the resulting matrix C' = (¢;5), the following algorithm computes a
cost-minimizing SP-match:

SCORE-PCM-SYNCHRONIZATION(C,s,p)

1 i:=s, j:=p, SP-Match:=0

2 while (¢ >0) and (j >0)

3 do if c[i,j] =cli,j —1]

4 then j:=j5—-1

5 else if c[i,j] =c[i —1,]]

6 then 7:=1—1

7 else SP-Match := SP-MatchU {(i,4)}, i:=i—1, j:==j—1
8 return SP-Match

In the next section we give an example to illustrate this procedure and report
some of our experiments. As we mentioned before, SM- and MP-synchronization
can be done similarly to the SP-case. Furthermore, other synchronization prob-
lems such as synchronization of two PCM-data streams P; and Ps (P1Ps-
synchronization) may be achieved by using a score S as a reference and carrying
out both an SP;- and an SP3-synchronization.

We conclude this section with some comments on the parameter vector
= (o, 8,7,0,¢, A). In most of our experiments we set the quantization con-
stant to A = 50 ms. This threshold was chosen since it represents a good com-
promise between psychoacoustically distinguishable asynchronisms of chords and
the shortest possible musical note durations. By the parameters o and 3 one
can weight the cost for the symmetric difference of pitch sets corresponding to
matched onset times, whereas by the parameters v and § one can weight the cost
of those note objects which do not have a counterpart in the other data stream.
One meaningful standard choice of the parameters is « = 3 =~ =6 = 1. How-
ever, if one wants to penalize non-matched onset times, for example, one may
increase v and d. In the case ( = 0 the last sum of the cost function remains
unconsidered. Increasing ¢ will hamper matches (i, j) whose onset times s; and
p; differ too much with respect to their relative positions in their respective data
stream. In other words, excessive global time divergence in the synchronization
of the two data streams can be controlled.
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5 An Example

We illustrate the SP-synchronization by means of the example from Fig. 3. The
score S represents the first four measures of the Aria. The PCM-version P repre-
sents a recording or the same measure performed on a Steinway grand piano. The
physical length is ¢(P) = 13 sec. The quantization constant is set to A = 50 ms.
In the following, we restrict ourselves to the second measure, where two appog-
giaturas appear in the right hand of the score. Those are modeled by fuzzy notes.
Table 1 shows the note objects of the score S and the A-quantized extracted
PCM-data Pa.

S Pa
i 8; Soi St J pi Poj
5 3{54,81}0 7 3.86 {54, 81}
63.50 (78,79} 8 4.47 {79}

9 4.75 {66, 78}

7 4{57}  {74,76} 10 5.06 {57, 66, 76}
11 5.71 {57, 74}

8 5{62} 0 12 6.39 {57, 62}

Table 1. Note objects for the score S and the A-quantized extracted PCM-data
P, for the second measure of the aria (cf. Fig. 3).

This example also illustrates two typical phenomena appearing in the ex-
tracted PCM-data. Firstly, in position j = 10 the extracted note of pitch 57 also
appears in positions 11 and 12. This can be explained as follows: this note con-
tinues to sound and, at every new note attack (e.g., note of pitch 74 at position
11 or note of pitch 62 at position 12), the extraction algorithm again interprets
the note of pitch 57 as a “new” note. Secondly, in position 9 appears an “erro-
neously” extracted note of pitch 66 which differs from the expected note of pitch
78 by an octave. This might be caused by the harmonics of the still sounding
note of pitch 54 at position 7 and the new note of pitch 78 at position 9. Actu-
ally, these “octave errors” are typical for the extraction algorithm. To tackle this
problem one can restrict oneself to only considering pitches which are reduced
modulo 12 when using the note parameters as input for the synchronization al-
gorithm. In spite of this reduction one is still left with sufficient information for
a successful synchronization.

Table 2 shows the part of the cost matrix C' = (¢;;) corresponding to the
second movement using the parameter vector 7 = (1,1, 1, 1,22, 50) and a modulo
12 reduction of the pitches.

From C' one can compute the global SP-match p. For the second measure
this gives the matches {(5,7),(6,8),(7,10),(8,12)} which are also printed in
bold face in the above table. Note that the SP-algorithm has matched for both
appoggiaturas of the score S the corresponding fuzzy notes at position ¢ = 6 and
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6 7 8 9 10 11 12
4 114.8476 114.8476 114.8476 114.8476 114.8476 114.8476 114.8476
5 114.8476 111.8700 111.8700 111.8700 111.8700 111.8700 111.8700
6 114.8476 111.8700 110.8132 110.8132 110.8132 110.8132 110.8132
7 114.8476 111.8700 110.8132 110.8132 107.4704 107.4704 107.4704
8 114.8476 111.8700 110.8132 110.8132 107.4704 107.4704 106.7956

Table 2. Excerpt of the cost matrix C' = (¢;;) corresponding to the second
movement of the aria using the parameter vector 7 = (1,1,1,1,22,50) and a
modulo 12 reduction of the pitches.

i = 7 respectively with the corresponding first notes of the appoggiaturas of Pa
at position j = 8 and j = 10 respectively.

6 Experiments

We have implemented prototypes of the extraction algorithms described in Sec-
tion 3 and the synchronization algorithms using MATLAB. Our algorithms for
SM-, SP-, and MP-synchronization have been evaluated on a variety of classi-
cal polyphonic piano pieces of different complexity and length (ranging from 10
to 60 seconds) played on various instruments. For handling MIDI files within
the MATLAB environment, we have implemented several tools for importing,
exporting and visualizing MIDI data. Those tools have been made available for
the research community, see [8]. Furthermore, we have systematically generated
a library of more than one hundred test pieces both in MIDI- and PCM-format
played on a MIDI-piano, a Steinway grand piano, and a Schimmel piano. In
some of those pieces our player has deliberately built in excessive accelerandi,
ritartandi, rhythmic distortions, and wrong notes. Even in these extreme situa-
tions, where one unsurprisingly has many “erroneously” extracted note objects
which considerably differ from the score-data, our SP-synchronization algorithm
resulted in good overall global matches which are sufficient for most applications
mentioned in the introduction. Even more, in case of rather accurately extracted
note parameters our synchronization algorithms could resolve subtle local time
variations in an interpreted version of the piano piece.

As has already been observed in previous work, the evaluation of synchro-
nization methods is not straightforward and requires special care. First, one has
to specify the granularity of the alignment which very much depends on the
application in mind. For example, if one is interested in a system which simulta-
neously highlights the current measure of the score while playing a corresponding
interpretation (as a reading aid for the listener), a deviation of the alignment of
a note or even several notes might be tolerable. However, for musical studies or
when used as training data for statistical methods a synchronization at note-level
or even ADSR-level (Attack-Decay-Sustain-Release) might be required.
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Intuitive objective measures of synchronization quality may be the percent-
age of note events which are correctly matched, the percentage of mismatched
notes, or the deviation between the computed and optimal tempo curve. (The
output of a synchronization algorithm may be regarded as a tempo deviation or
tempo curve between the two input data streams.) However, such a measure will
fail if the note events which should be aligned do not exactly correspond (such as
for trills, arpeggios, or wrong notes). In such a case the measure might give a low
grade (bad score) which is not due to the performance of the algorithm but due
to the quality of the input streams. Here, one would rate a synchronization as
“good” if the musically most important note events are aligned correctly. Unfor-
tunately, to determine such musically important note events a manual interaction
is required, which makes the procedure unfeasible for large-scale examinations.
Similarly, the measurement of tempo curves requires some ground truth about
the desired outcome of the synchronization procedure. Moreover, if a synchro-
nization algorithm is intended to handle even changes in the global structure of
the musical piece such as an additional chorus or a missing bridge [18], modified
notions of tempo curves have to be considered.

For those reasons, we decided to evaluate our synchronization results mainly
via sonification, which allows an acoustic assessment on the ADSR-level. The
design of suitable objective measures, which allow a systematic and automatic
assessment of the synchronization results, is still an open research problem.

In the following we describe one of our experiments where we started with
an uninterpreted score-like MIDI-version and an interpreted PCM-version of a
given piano piece. Using the results of our MP-synchronization, we automatically
modified the onset times of the MIDI-data stream to correspond to the PCM-
data stream with regard to the global tempo and the local tempo variations.
This results in an “expressive” MIDI-version which represents a sonification of
our synchronization results. In case of good extraction parameters the modified
MIDI-version rhythmically sounds like a real interpretation of the underlying
piano piece.

To demonstrate our synchronization results we made some of our material
available at http://www-mmdb.iai.uni-bonn.de/download/syncDemo/, where
we provide the underlying test material as well as synchronized versions for sev-
eral excerpts of classical piano pieces. For each example we supply the following
data:

(1) An uninterpreted MIDI-version (representing the score of the underlying
piece of music).

(2) An interpretation the score (1) performed on an acoustic grand piano (WAV
format).

(3) A MIDI-file containing the score parameters (onset times and pitches) ex-
tracted from (2) using our extraction algorithm.

(4) An expressive MIDI-version created from (1) by modifying the onset times
according to our synchronization result. (The note lengths are adopted from
(1). Furthermore, the onset times of non-matched note events of (1) where
modified via a simple interpolation.)
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(5) An audio-file (WAV format) containing a mix of the the original interpreta-
tion (2) in the right audio channel and a synthesized version of the expressive
MIDI (4) in the left audio channel.

In some of the cases, two different synchronized versions are given, which have
been derived using slightly different choices of the parameter vector. As can
be observed by listening to the audio-files (5), the synchronization results for
the Mozart and the two Bach variations are very accurate. In the Burgmiiller
example, our player deliberately built in excessive local tempo deviations. Even
in this case our algorithm computed a good global alignment with occasional
local inaccuracies. The Bach Aria is synchronized very well except for the trill.
This can be explained as follows: The number of notes in the trill of MIDI-
version (1) is larger than the one of the corresponding trill in the interpreted
PCM-version (2). In other words, there is no exact correspondence of note events
in the data streams to be aligned (just as in the case where one has wrong notes
in the interpretation). In this case, all what one can expect is not an alignment
on the note-level but a rough alignment of the whole regions corresponding to
the trills. This is actually what our algorithm does: the notes before and after
the trill are matched correctly and the additional notes within the trill of the
MIDI-version are not matched at all — only for the sonification we determined
the onset times of the additional notes by interpolation which does not reflect the
actual synchronization result. This also shows that the method of sonification
has to be treated with care when evaluating synchronization results.

The last example is also illustrated by Fig. 5 corresponding to the first four
measures of the of the Bach Aria BWV 988. The top part of the figure shows
the piano roll representation of the score-like MIDI-version, the medium part
shows the piano roll representation of the extracted note parameters from our
interpreted PCM-version (note lengths are not considered), and the bottom part
shows the piano roll representation of the “expressive” MIDI-version represent-
ing the synchronization result (note lengths of the score-like MIDI-version are
used). As one can see in the medium part, the extraction algorithm also gen-
erates erroneous score-parameters such as typical octave errors coming from
the harmonics. The quality of the extracted note parameters may also be low in
parts consisting of many short notes. Furthermore, the uninterpreted MIDI-data
stream and the extracted note parameters do note match well around the trill
passage. Nevertheless, using the concept of partial matches we do not attempt to
force alignment of non matching note objects. The bottom part of Fig. 5 shows
that in spite of the minor extraction quality, this strategy allows us to find a
proper MP-synchronization.

7 Conclusions

In this paper we have proposed algorithms for the automatic synchronization
of different versions of a polyphonic piano piece given in different data formats
(score, MIDI, PCM). Our implementation yields good synchronization results



208 Vlora Arifi et al.

T —

(e

=)

Fig. 5. (a) Uninterpreted MIDI of the first four measures of the Bach Aria BWV
988, (b) MIDI representation of the extracted data from an interpreted version,
and (c) expressive MIDI version representing the synchronization results.

even for complex PCM-based polyphonic piano CD-recordings. One of the deci-
sive features is a carefully designed cost function which not only penalizes non-
or partially matched note objects but also large relative global time deviations.
The parameter vector m allows to weight different aspects in the matching pro-
cess and leaves room for experiments. In contrast to related approaches [17,18],
our method fully works on the symbolic, i.e., note-level domain. Working with
such score-like features not only accounts for high accuracy — even when having
strong local time deviations — but also makes DWT-like computation feasible
due the relatively small data sets used in the actual synchronization. A further
qualitative advantage of our matching-strategy is the focus on partial matches.
Here we only include promising score-based matches in the final synchronization
result rather than forcing a match for each note object in each of the two versions
to be aligned.

Our system works off-line, where the computational bottle-neck lies in the
preprocessing step needed to extract note-parameters from the PCM-files (where
we up to now did not use any score information so far). An ongoing research
project is to exploit the score information already in the extraction step. (See
also [16] for a similar approach.) This prior knowledge allows to use prediction
methods (in particular Kalman-filtering) which in connection with time-varying
comb filters may result in extraction algorithms running in real-time. Such fast
algorithms may be at the expense of possible lower quality of the extraction
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parameters. However, even lower quality of the parameters may be sufficient for
a successful synchronization when using a suitably designed cost function which
is robust under erroneous parameters.

Future work will also be concerned with properly defining various different
types of synchronization problems some of which have been sketched in the last
section. Based on such clearly defined problems, suitable measures for comparing
synchronization results and assessing their overall quality have to be devised.

Automatic music processing is extremely difficult due to the complexity and
diversity of music data. One generally has to account for various aspects such
as the data format (e.g., score, MIDI, PCM), the genre (e.g., pop music, classi-
cal music, jazz), the instrumentation (e.g., orchestra, piano, drums, voice), and
many other parameters (e.g., dynamics, tempo, or timbre). Therefore for most
problems in computational musicology there are no universal algorithms yielding
optimal solutions for all kinds of music. The approach by Turetsky et al. [1§]
works for general instrumentations but has weaknesses concerning large local
tempo variations, whereas our approach captures even large local time devia-
tions of a specific interpretation but is limited concerning the instrumentation.
The approach of Soulez et al. [17] may be classified in between the former two.
For the future it seems to be promising to build up a system which incorporates
different, competing strategies (instead of relying on one single strategy) in com-
bination with statistical methods as well as explicit instrument models in order
to cope with the richness and variety of music.
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Abstract. Score following has been an important area of research in Al and
music since the mid 80’s. Various systems were developed, but they were
predominantly for providing automated accompaniment to live concert
performances, dealing mostly with issues relating to pitch detection and
identification of embellished melodies. They have a big potential in the area of
education where student performers benefit in practice situations. Current
accompaniment systems are not designed to deal with errors that may occur
during practising. In this paper we present a system developed to provide
accompaniment for students practising at home. First a survey of score
following will be given. Then the capabilities of the system will be explained,
and the results from the first experiments of the monophonic score following
system will be presented.

1 Introduction

A score following system monitors a live performance mainly for the purpose of
providing an automatic accompaniment to live performers. The first examples of
score following systems were developed by Dannenberg [4] and Vercoe [15] in two
different studies and were capable of handling the input from a monophonic sound
source. Subsequent score followers were polyphonic and had extended capabilities to
handle ornaments such as trills and mordents as well as more widely dispersed pitch
clusters such as glissandos [1].

Although score following systems were originally invented for the live
performances, they also have potential for providing the core function for tutoring
systems and performance evaluation tools. Based on his score following systems,
Dannenberg [7] has developed the Piano Tutor, providing guidance to students. The
Piano Tutor is an expert system that uses score following techniques to monitor
student progress and identify weaknesses. When the students successfully complete a
set of exercises, the expert system then advances on to a higher level of exercises.
Similarly, Bora’s [2] system is also built to evaluate student performances, although it
does not provide any further tutoring driven by an expert system [2].

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 211-219, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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All the above systems rely on MIDI signals as input and they use string matching
methods. More recently, new systems have been developed that have the capability to
handle audio input captured by microphone: they use stochastic pitch detection
algorithms when receiving the input from their sound sources [3], [11], [12], [13].
Their main strength, on the one hand, is the ability to follow the performances that do
not depend on the fixed pitches. On the other hand, they are incapable of handling
even the shortest of jumps in the performance, which is the main weakness. They also
need to be trained through several rehearsal sessions in order for them to be able to
adjust the state transition weights to follow the performance precisely.

MuseBook Score, which is marketed as an automatic page-turning system for
pianists, is another score following system. It follows the performance by listening to
pitch. According to AMuseTec website [16], the system is capable of following the
performance and displaying the current note being played by the pianist. However,
the system does not offer any accompaniment features in live performance. They
acknowledge that it is due to the delay caused during the pitch detection process.
Although there is some video demonstration of the running system at AMuseTec
website, there is no published information about the techniques used in the product.

The idea for score following systems originates from a very successful product
called “Music Minus One” (MMO), which is in short a special recording of musical
pieces (piano concertos and violin sonatas are two of the most popular genres) made
for an instrumentalist who does not have accompanists during the practice sessions
[13]. Normally MMO comes with two versions of the same piece, the one complete
performance serving as a guide as to how the ensemble should be worked out, and the
other the accompaniment only. It assumes that the performer of the featured
instrument plays the MMO recording on the stereo and plays along with the second
version of recording, trying to fill in the solo part that is deliberately omitted from the
recording. While the concept is excellent, its limitations are obvious. Firstly, MMO
does not take into account the fact that the learners cannot perform the piece at the set
tempo from the outset; students may need to learn to play slowly first. Secondly, it
does not allow the student to stop, make mistakes and repeat challenging sections.

Our score following system is designed to be used by students learning the pieces
on the piano. In concert performances the number of errors will be very small and
jumps are not normally expected. Based on this assumption, most score following
systems that are developed for concert performances focus on the problems related to
pitch detection and the identification of ornaments. Our approach deals with
significant jumps in the score, repetition, in addition to the sudden changes of tempo,
wrong pitches and identification of ornaments that had previously been achieved with
some degree of success by the previous scholars in the field.

2 The System

In this paper we describe our system, which is aimed primarily at students engaged in
practicing the piano. Its main objective is to facilitate their practice by providing a
reliable accompaniment to the students learning at home environment. The system
should be able to cope with a large number of mistakes: not only pitch or rhythm but
also jumps, repeats and sudden tempo changes that are made deliberately or
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unconsciously during the practice. It may be worth adding that —ornaments especially
those of technically demanding ones— are often played erratically, and for this reason
students might be advised to omit them during the early stages of practicing. The
system should be designed to tolerate such interpretative problems.

2.1 Input/Output

For the present work we selected a Yamaha Disklavier Pro series piano, which has a
MIDI input and output. The student pianist (user) plays the piece on the piano, and the
system provides the accompaniment, which is also played on the same instrument.
The system can provide the suitable accompaniment for left hand and right hand
practices. The user can also choose between two different tempo options, which will
be explained in Section 2.4.

2.2 The Score Following Algorithm

Common Practice Notation (CPN) is a universal notational system representing music
in written form. Because it reduces the principal dimensions of music to pitch and
duration, it represents music in a very compact way. The continuous musical stream is
quantized into discrete notes, resulting in losing some information originally present
in music. However, this is not a problem as part of the lost information about the
music can be reconstituted through the ‘interpretation’ of trained performers. To help
the performers recover this lost information, CPN also makes use of additional
expression marks. Thus although the basic unit representation is heavily quantized,
different performers can give different performances by interpreting these notational
symbols and instructions [8].

Unlike CPN, MIDI does not deal with any expression marks and instructions
which are open to interpretation. Instead, all these are explicitly spelt out in the MIDI
score (such as trills and crescendos). However, in actual performances, ornaments are
seldom played identically, even by the same person. Therefore, it would be
impractical to encode a single interpretation of an ornament in the MIDI file as it will
deny the player any licence to have his or her performance style. For this reason, the
MIDI files the system uses do not include any ornaments, allowing the players to add
their own interpretation to the performance. The way the system handles ornaments is
discussed in section 2.3.

In our system, the music is represented as a series of events. The score to be
followed is represented by the tuple (pitch,duration) in every event. To each event a
list of accompaniments is attached. This list contains pitch, duration and
note_on/note_off messages for the accompaniment to be played within the
corresponding event.

The system is a multi-agent system, where agents represent single events of the
score representation. Each agent is sequentially linked to the next one in a manner of
a linked list. We call this linked list the score array. Each agent holds the pitch
information and continuously monitors the performance. When a student plays a note,
all agents corresponding to the pitch being played are activated to their maximum
activation values. When a key is released, the previously-activated agents are
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deactivated. But the activation values of the deactivated agents are not assigned to the
value of zero; instead, the activation values decrease slowly until they reach zero. In a
musical composition, the same notes are used many times, hence many agents being
activated at a time. But as the student plays along the piece, a region with high
activity appears in the score array. The agent having the highest activation value is
picked up the as the score location by the system.

There are two different strategies for decreasing the activation values. In the first
one, the activation values are decreased every time the user plays a new note. In the
second one the activation values are decreased at user defined time intervals (200
milliseconds — 1000 milliseconds). The first option acts like a “pause” key. If the user
stops and does not play for a long time, the system resumes playing from the last
position when the user starts playing again. However, if the second option is selected,
the player has to play continuously or otherwise, the system will reset itself. The first
option is more successful at responding to repeats while the second one can pick up
new start locations better. The second option is more suitable for concert ready
performances.

The communication between the computer and the piano is provided by a USB
MIDI interface which has the unidirectional delay of 110 milliseconds. Because of
this communication delay, we had to skip a validation step which was originally
incorporated in our score following algorithm. In the original algorithm, the system
first checked the key pressed by the player before sending the accompaniment data to
the piano. If the pressed key was identical with the expected pitch, the system sent the
appropriate accompaniment to the piano. However, due to the delay, the
accompaniment was heard approximately 230 milliseconds too late. For this reason,
in the current system as soon as the next expected note is computed by the system,
without carrying out any validation process the accompaniment is sent 110
milliseconds before the player is expected to hit the key.

The system makes use of a confidence mechanism which acts like a short term
memory. This mechanism enables the system to reliably follow a piece with number
of repetitions by reducing the search space. The initial experiments without the
confidence mechanism were carried out with pieces by Beethoven, Mozart and J.S.
Bach. The music was played with one hand only on the piano and the system was
assigned to provide the other hand accompaniment. Although the system performance
was satisfactory with Beethoven and Mozart, it encountered some difficulties with the
music of Bach. One of the pieces we used was the Prelude in C minor from the Well-
Tempered Clavier, Book I (BWYV 847/1) which is based on the broken-chord motif in
various keys. It would seem that the repetition of the identical melodic patterns
occasionally caused the system to lose the score position even if the player was not
making a jump or an error.

Repetition is an inherent property of music. Many traditional musical forms
contain sections that repeat the materials used earlier in the piece. For example, a
traditional Rondo would be expected to have a structure of A-B-A-C-A (and so forth),
where all As are usually exact repetitions in the same key. For our score following
system, this may create an ambiguity. This problem has been resolved by including a
confidence mechanism, which increases the weight of a specific section when its prior
section is followed successfully. So, for example, when section B is being played, the
weight of the second A section is then increased. But when the player plays A, the
system picks one of the A sections randomly as it would not have sufficient clues to
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determine as the weight of all A sections would be the same in this case. As soon as
the player starts playing the next section—either B or C—the system can then decide
within a single note which A section it played.

The confidence mechanism artificially increases the weight of the most active
region on the score array so that the competing hypotheses—i.e. other possible
candidate locations like as given in the previous example—would not be activated as
a jump destination. To allow the score follower to react to a jump, this active region
with increased weight receives heavier penalties—i.e. the active region receives an
instruction to decay its strength faster than the competing hypotheses—than the other
possible candidate locations when the player makes a mistake or jumps to another
location of the score.

2.3 Handling of Trills and Ornaments

An important issue in performance is ornamentation. It often varies from edition to
edition, and different performers may choose different ways of interpreting and
executing ornaments. Score following systems should be able to cope with variations
in the interpretation.

Dannenberg [S5] uses a preprocessor to handle the problems caused by trills and
ornaments. The preprocessor which contains a finite state machine is responsible from
listening to the input and has two internal stages called “normal” and “trill/glissando”.
The score follower, which is referred as the matcher, receives the performance data
from the preprocessor. When the preprocessor detects a special signal in the score like
a trill or glissando, it changes its internal state to “trill/glissando” and stops sending
any data to the matcher. The preprocessor does not change its state to normal and
start sending data to the matcher until it receives a longer note or the next note after
the trill/glissando is performed near its expected time.

In our approach, as mentioned above, all ornaments are omitted from the stored
data representation of the score. This allows students to add their own ornaments to
the musical piece; at the same time, it adds greater flexibility by allowing the user to
skip ornaments, or play them incorrectly.

The system employs two heuristics in order to be able to identify the ornaments
performed by the performer:
¢ the notes, performed unexpectedly, are around the expected key
o the ornament should end with the expected note

These heuristics deliver successful results in case of unexpectedly performed
ornaments (Section 3.3).

2.4 Tempo

One of the most significant issues in autonomous accompaniment systems is the
process of beat tracking. The system requires a constant notion of tempo to be able to
play in synchronization with the performer. Although in a well-polished performance
some tempo variations are frequently introduced by players, during the practice
sessions tempo variations often occur at the technically challenging passages, and can
be sudden and substantial.
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The system implements two contrasting methods of handling the tempo variations:
(1) user dependent tempo and (2) forced-tempo. The user has to choose one of these
options at the beginning of the practice session.

When practising a piece, some students might play the technically demanding
passages slower. In user-dependent tempo, the system instantly adjusts the tempo if
the player makes a sudden change.

If the forced-tempo option is selected, the system does not change its tempo
suddenly when detecting a sudden tempo change, but it adopts the new tempo
gradually. This behaviour forces the student to catch up with the accompaniment. If
the tempo changes are minor, caused for example by expressive performance, the
system will change its tempo accordingly. The forced tempo option can be useful for
the students who feel comfortable with the performance of the musical material and
need to push the practised piece to the expected final speed.

To calculate the tempo changes in both cases, weighted averaging is used. In user
dependent tempo, the last tempo changes have a higher weight than the previous ones.
However, in forced tempo, although the last tempo changes also have a relatively
higher weight, the weights are not as distinct as the ones in user dependent tempo.

3 Results

To illustrate the system’s performance, we use the Prelude from English Suite in A
minor (BWV 807) by J. S. Bach. While the player performed only the right hand part
of the piece, the system accompanied the player with the left hand part. Although the
right hand part is mostly monophonic, there are a few chordal passages. To be able to
run the experiment we edited the piece and performed only the top voice in these
passages. The results presented here make use of the confidence mechanism. The
activation values are decreased every time the player presses a new key on the piano.

3.1 Experiment 1: Performance Without Mistakes

In the first experiment the player simply played through the whole piece from the
beginning without making any errors or jumps. The system was able to accompany
the player from the beginning to the end without making any mistakes.

3.2 Experiment 2: Performance with Wrong Notes and Jumps

Repeats are the most common type of jumps that one could make during the practice.
To be able to test the reaction of the system in case such repeats occur, we prepared a
scenario with some sections repeated over and over. These repeats contained some
missing/wrong notes with their number decreasing in each repeat.
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Fig. 1. Excerpt from the Prelude from the English Suite in A minor (BWV 807) by J. S. Bach
and the results from experiment 2. The highlighted regions marked I, II, III and IV show the
difference between the expected accompaniment and the actual system response

Fig. 1 shows the actual score, score performed, expected accompaniment and
system response of an example scenario of the practice described above. In this
scenario, the student practises this particular bar over and over again until she or he
can play the passage without mistakes. This example actually records that this student
is making fewer mistakes at each repeat. The regions marked on the table highlight
four areas of mismatches between the expected accompaniment and system response,
which we discuss below.

When the player starts playing from a random point in the score, the system needs
to ‘listen’ for a few notes in order to find the score location. During this time the
system is not be able to provide any accompaniment (Region I, Fig. 1).

Region II shows another mismatch. The student here made a mistake, adding a
sharp to the ¢ of the score. Although the expected accompaniment would be silent, the
system actually plays a, which would be the accompaniment to the correct ¢ natural
note. This is because the confidence mechanism tries to tolerate the error made by the
player here and continues to provide an accompaniment despite the error.

The mismatch in Region III is caused by the jump performed by the player. The
system requires sufficient clues, i.e. series of pitches, to be able to determine the
position on the score.

In Region IV, the player starts repeating the section again. The system starts
responding with a wrong note (b instead of a) after resuming the accompaniment.
However the system resumes playing the correct accompaniment within two extra
notes.

3.3 Experiment 3: Handling the Trills

In the third and last experiment, we tested the system’s abilities to handle ornaments
and trills by adding some trills which were not defined in the score. The results of this
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experiment are summarised in Fig. 2. Although the trills were not indicated in the
stored data representation, the system was able to continue to provide an acceptable
accompaniment, skipping a single note only (highlighted with label I in Fig. 2).
Though trills are detected as wrong notes, the heuristics included disable the
confidence mechanism temporarily to avoid it changing the weights of other notes so
that a jump will not occur. The trills were added at random.

score performed |c b a g#‘a*b cd c‘a*b ga b‘c"a g#a‘c"a bga f# g‘ﬂf ed cb c:‘avb akb g‘ﬂﬂ

expected accompaniment|e d ce acfbecdbcbace aecdbca b ﬂbg#a—d—e—e— a

systemresponzele dce a-fbecdbcbace aecdbca b ﬂbg#a—d—e—e— a
I

Fig. 2. Excerpt from the Prelude from English Suite in A minor (BWV 807) by J. S. Bach and
the results from experiment 3. In the first row of the table, the trill marks show the random trills
added to the piece by the performer. The difference between the expected accompaniment and
system response is highlighted

4 Discussion and Further Work

The above results demonstrate how the system copes with the various situations that
can occur during piano practicing, such as repeats, wrong notes and interpretation
variations in performing the ornaments. When there are no mistakes in the
performance, the system performs accurately. Where trills and ornaments were
encountered the system was also able to provide the right accompaniment. In the case
of repetitions of the same passage played with a number of mistakes, the system
needed one or two successive notes to catch up with the performer. This was because
the system needed to resolve the ambiguity caused by the new jump location. This is
also what would be expected to be the case with a human accompanist.

In this paper we presented a piano score following system which is designed for
piano students practicing on a MIDI instrument. However, instruments with MIDI
interfaces are not very common and the existing ones are generally far more
expensive than the more traditional instruments. In order to create a system that can
be used with a wider array of instruments, a pitch detector can be used.

The polyphonic version of the described score following system is currently under
development. One of the important advantages over the monophonic version will be
the inclusion of rhythmical information to the score following task. This will allow
students to practise a wide range of piano repertory without any restrictions.
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The present score following system, which only makes use of the pitch information
from the performance, has so far produced promising results. With the added
capabilities of polyphonic music support, using duration information for increased
robustness and a pitch, the system will be a valuable learning tool for many music
students.
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Abstract. This paper discusses aspects of topology as relevant for loop
dynamics as they occur in physical modeling synthesis algorithms. Bound-
ary and interaction point behavior is treated purely from a topological
perspective for some dynamical systems in one and two dimensions.

1 Introduction

The purpose of this paper is to discuss aspects of topological ideas to interaction
models of loop dynamics.

The theoretical approach is related but generally somewhat different to wave-
guide-like arguments (as reference see for example [1]). Specifically, we emphasize
the topological structure of the problem over the details of the dynamics. This
way arguments are valid for any dynamical situation for which the given topo-
logical structure holds. In this case the structure is one of closed and directional
loops or orbits. Hence the only assumption made about the dynamics is that
disturbances propagate, in some otherwise unspecified fashion, along such tra-
jectories, either directly or in some useful approximation. This idea is in fact
not new, but rather has been developed since Poincaré as a core aspect of the
contemporary theory of dynamical systems. The goal here is to study simple
one and two-dimensional situations that dynamically are very well-behaved yet
occur frequently in physical modeling of musical instruments. That is, the pe-
riodic trajectories will be assumed to be structurally stable under perturbation
and hence we are only concerned with aspects of the dynamics that is regular
and integrable.

First I will develop the one-dimensional situation and introduce projection,
lifting and covering arguments with respect to point interactions. Based on this
discussion I will try to illustrate the benefit of postponing spectral arguments as
essential features of interaction dynamics can be shown easily using the presented
arguments. In addition the arguments are not confined to a specific dynamic
situation and hence have a more general application that when a dynamical
operator and domain shapes are starting points of the discussion.

Then I will extend this treatment to two-dimensional dynamics for which
the dynamics can be represented to fall into families of tori in some related
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parameter-space. The action of point excitation will be extended to this situa-
tion.

A note on notation and treatment. I will use conventional notation and
nomenclature as customary in the topology literature as far as possible, though
in general, discussion and illustration of the core ideas by pictures will take
precedence over detailed notation. The notation used is informed by texts by
Hatcher [2, chap. 1] and Jénich [3, chap 9].

2 Remarks on the Relationship to Exact Wave-Equations

The relationship of orbit dynamics to the exact wave-equation is a very interest-
ing and important one. However, it is also one that is difficult and in general yet
unsolved. I will make no pretense that any contribution is made here to narrow
this gap. The topological ideas are straight-forward for a class of billiard prob-
lems. For short wave-lengths the many properties of the wave-equation on the
domain can be studied well using the billiard model. See for example [4, Section
2.7]. This was known to Keller and Rubinow already as they set up billiard style
path constructions. The general case and specifically the behavior at long wave-
lengths is far less understood but it is interesting that the discrepancy reported
by Keller and Rubinow and repeated by Brack and Bhaduri [5] is small (less than
3%) and the error vanishes quite quickly [6]. In case of banded waveguides this
error in the spectrum is usually avoided by tuning the model to exact frequencies
which in turn corresponds to accepting spatial discrepancies [7].

3 Topology of Loop Dynamics in One Dimension

First I want to discuss the case of one dimensions. With dimensions, unless oth-
erwise noted, I will mean the spatial dimensions of a related dynamical domain
from which the topological construction is derived.

Let’s start of with a one-dimensional domain of a line interval I. One could
write I C R but strictly speaking we are not interested in the the metric proper-
ties that can be interpreted in R, rather we are only interested in its connectivity.
This also means that the line doesn’t necessarily need to be straight. On the line
I we will assume a waveguide-like dynamic of left and right-traveling distur-
bances, which travel along the line I staying on it through reflections at the
domain limits 01.

By imposing a Euclidean distance metric and a constant wave speed on I with
a suitable discrete spatial representation one would then immediately recover a
standard loss-less waveguide model. Instead we want to study the properties in
the absence of defined metric (length of string), wave speed (string tension and
density). The advantage we gain are insights that hold for other situations as
well, which share the same topology though potentially vastly different metrics,
geometric layout and wave dynamics.

In the above description, the dynamics is uneventful except for the boundary
points at which additional treatment has to be imposed. This special treatment
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can be generalized by seeing the one-dimensional line as a projection w of a
two-dimensional loop, for example the circle S into the line I. This projection
can be visualized as a circle lying flat and its two branches overlapping in ones
view. We will call the operation of finding a smooth connected path in a higher-
dimensional space lifting. The circle as a closed path is everywhere smooth,
though we will keep track of the former position of the reflection by keeping
singular markers at reflection points. While in the I an orbit apparently changes
direction at the boundary OI this is not true on the lifted path S, where an orbit
never changes direction. If the reflection points do nothing but keep disturbance
within I, this constitutes already the first purely topological representation of
the dynamics, meaning that all dynamical changes have been converted into
smooth connectivity properties. We will call the cover trivial if reflections do not
add dynamical behavior to a lifted space. An example of a waveguide model of
this type would be the Karplus-Strong model without loss-filter.

In order to study interaction behavior on the lifted topology, we will first
introduce another scenario. Instead of assuming a simple lifted space, we will
assume that the lift consists of two layers which we will call sheets. The number
of sheets are sometimes called the degree of a cover and if disconnected are
labeled by sets of integers for each path-connected component [8, p. 464]. To
illustrate a situation that leads to non-trivial covers and hence more than one
sheet, consider the case of a loss-less string or a loss-less waveguide structure
with Dirichlet boundary conditions. In this case, disturbances reflect with a sign
inversion.

Fig. 1. Sequence of disturbance states on the line domain and its lifted circle
domain.

Now let us place a disturbance of positive sign into the solution traveling
in one direction and the same into the opposite direction. We trace the sign of
the disturbance over time. At boundaries the impulses invert. We observe that
the impulse traveling in one direction will always return with its sign inversed.
Hence the two positive impulses trace two separate covers that are distinct and
the total behavior can be seen as a projection of these distinct states onto the
same covering space. See figure 2.



Aspects of the Topology of Interactions on Loop Dynamics 223

N

Fig. 2. The topology of two inverting reflections on a string.

To compare this with other boundary condition situations, we take Neumann
conditions (no sign change at the boundary). Observe that we still have a non-
trivial cover as positive and negative disturbance never share the same space.
The cover maintains this separation everywhere as is depicted in Figure 3.

-

Fig. 3. The topology of two non-inverting reflections on a string or of a radial
vibration of a cylinder.

This case is interesting because it can be used to visually prove the uniform
velocity of a velocity excited string. The initial velocity distribution of some
overall sign will be preserved in the lifted spaces and will be integrated over
once per traversal through the covering loop, hence string will travel in the
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direction of the initial velocity distribution sign with the velocity defined by the
traversal duration [9].

Fig. 4. The topology of one inverting reflections on a string.

A particularly interesting case is given by one Dirichlet boundary on one end
combined with a Neumann condition on the other. In this case a disturbance
will traverse the covering space twice to return to its original state. Hence, as
opposed to the previous two cases the lifted space is thoroughly path-connected.
See Figure 4. This implies the well-known fact that given the same metric and
propagation behavior, this configuration has half the fundamental frequency.
However we immediately also see that there are no two distinct sets of excitation
configurations as opposed to the previous case. As a note (see [3, p. 57]), this
topology is just the Mobius band which in turn can be described by the interval
I = [—1,1] and the ends of the interval identified with a sign inversion (i) = —i,
1€ [-1,1].

The degree of the cover the matched boundary conditions of either Neumann
or Dirichlet type is the same, namely {1, 1}. The degree of the cover with mixed
boundary conditions is {2}.

This already gives the topological result for the open pipe compared to the
closed one. A disturbance needs to travel the loop twice to return to its origin in
the same configuration and hence the wave-length is doubled for the pipe with
one open end [10, p. 51].

Additionally the difference in degree between implies that all disturbance
configurations can be reached by considering only one point in the lifted space
of the mixed situation, whereas in the matched cases there are unreachable con-
figurations. In practice one has however additional constraints on the excitations
of the loops.

To describe the treatment we will assume that a notion of length is defined.
This length describes how far disturbances travel over time. Additionally we
will confine the current discussion to the situation that is familiar for the wave



Aspects of the Topology of Interactions on Loop Dynamics 225

equation: Disturbances will travel to the left and right with equal contribution
and with sign dependent on the particular variable chosen [1].

Fig. 5. Distance of coincidences to reflection points.

This is a situation where the projection of disturbance contribution in the
lifted space coincide. Using this notion of distance we can then study when such
coincidences will occur as disturbances propagate on the loops. Generally it is
easy to see (for example in Figure 5) that disturbances coincide in the lifted space
if they have the same distance from lifted domain boundaries. This situation can
also be seen in Figure 1.

It also shows how an initial coincidence situation leads to another one after
a half-rotation in the lifted space, reaching again a situation where the distance
is symmetric and d/2 with respect to the second domain boundary. If the orig-
inal interaction point was in the middle, i.e. d/2 both to the left and the right
boundary. This is in fact a special situation. In Figure 6 we see the topology
of the disturbance coincidence loop. It is a symmetric eight-shaped loop where
the intersection point describes the lifted point of coincidence. In general the
situation is somewhat more complicated.

The complete situation can be seen in Figure 7. The double-sheet eight with
one double-intersection splits into a double-sheet of two path-connected loops
that cross at two separate coincidence points. The crossing! has the form de-
picted in Figure 11 (al). A single path-connected loop is depicted in Figure 8.

As is to be expected, the lifted loop does not self-intersect, as a single traveling
disturbance in only one direction would never find an intersection point with
itself. The loop is changing elevation at coincidence point and hence unfolds an
apparent region of coincidence in the plane cover.

Coincidence arguments are of interest as they allow to make “spectral-like”
arguments that are short-lived. At points of coincidence a disturbance can be
annihilated by matching it with an equal but sign-inverted disturbance. The

! We note that this crossing has the form of the Vassiliev knot invariant [8], but
knot-theoretic treatment will be work of the future.
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==

Fig. 6. Topology of disturbance coincidences at equal distance to both bound-

aries.

Fig. 7. Topology of disturbance coincidences at arbitrary distance to a boundary.
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Fig. 8. One loop of the generic disturbance coincidence topology.

conditions of coincidence is defined by the topology described above plus the
loop speed between coincidence points, which here is a global property. In the
case of the center excitation such annihilation can happen every half-rotation at
the same point, whereas otherwise it requires a full rotation for the configuration
to return to the same spot. Similar arguments have been used to derive non-
propagating excitations locally [11].

4 Topology of Loop Dynamics in Two Dimension

The situation naturally extends to two and more dimensions. Here we will only
discuss this extension to two dimension because of its applicability to vibrating
flat structures. It also already indicates how in general the extension behaves for
higher dimensions.

In the one-dimensional case we lifted a line-domain into loops in two dimen-
sions. In two dimensions we will principally be concerned with plane domains
which will be lifted into loops in three dimensions. More precisely the concern is
with a toroidal topology embedded in three dimensions. This is the flat, poten-
tially layered 2-torus, meaning that the metric of the related dynamic is “flat”
Euclidean space and that it is a 2-dimensional torus embedded in 3 dimensional
space. The layers correspond to the sheets of circle covers discussed in the pre-
vious section.

The details how toroidal structures relate to dynamical situations has been
known and has also been previously discussed in relation to physical models for
sound synthesis using banded waveguides [12].

To quickly give an intuition of this relation, see Figure 9. A family of parallel
rays will become straight through reflections if the plane is extended via mirror
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Reflections in the Plane
Gluing Reflections into Cylinder

Closed Trajectory
(Winding Ratio 8:1) Left and Right Reflections

Upper and Lower Reflections

Fig. 9. Folding of path-connected families from a plane sheet into 2-torus by
identifying edges representing reflections.

images. As the direction of the rays repeat after two reflections, these edges can
be identified and form a tube, which we here depict to be have an extended
volume, though the related dynamics is still flat. With the same argument the
ends of the tube can be identified after two reflections and then form a torus. If
the number of windings in both dimensions of the torus are integer, ray paths
will close and form loops.

For our purpose here, we will not consider the varied connections of such
loops to dynamical systems and refer to [6,12,7] for further details.

The torus has a cover of the square as follows from the construction above.
When projecting the torus back to the cover to undo the construction we see
that the four sides of the torus occupy the same space. In the case of mapping
the loops onto the line we usually encountered two loop branches to coincide on
the line. Reflections on the other hand are only concerned with one point on the
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loop, namely where the loop intersects with the reflection circle. Similarly in one
dimensions the loop intersected with the two reflection points.

Hence we can extend the treatment of reflection points simply to the two-
dimensional case by noting that a reflection constitutes a change in sheet of
the torus. Neumann boundary in two dimensions corresponds to a single-sheet,
unlayered torus. If the total number of crossings with reflection circles in both
toroidal dimensions are even then we get two separate crossing sheets whereas
if it is odd, we get a single path-connected 2-sheet loop, all in analogy with the
one-dimensional situation.

Ny, NV
78 AN

Fig. 10. Excitation point (center, left, far-left) and their loops. Top: cover. Bot-
tom: torus.

Properties of placement of disturbances on the covering space can by seen
in the depiction of Figure 10. In the case of center excitation and one off-center
excitation we see that for the given winding numbers, the disturbances trace only
two disjoint loops, whereas in the case of the other depicted off-center excitation
one gets four disjoint loops. Clearly, these are the only two cases possible for
integer winding numbers. On close inspection we see that in fact the center case
and the off-center case with two disjoint loops differ in the way the excitation
paths coincide. In the center case the disturbance contributions starting on the
outside of the torus share the same loops, whereas in the off-center case the front
outside shares with the back inside and the front inside disturbance contribution
shares with the back outside. The respective conditions are captured in the
following equations (1) and (2) with n being the overall sum of winding numbers
of the loop on the torus, d; 3 is the distance across reflection and n; » are winding
counts along independent torus dimensions:
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di = nq, da = na, ny,ng € N, np+na<n (1)
dy = nq, d2=(2n2—1)/2, niy,ng € N, ny+ne <n (2)

The coincidence loops are somewhat more complicated to depict than the
ones in one dimensions. Like in the one-dimensional case we expect a crossing
between paths from all possible directions to occur at a point of excitation. Given
that four directions (up-left, up-right, down-left, down-right) are possible on the
torus, this also defines the number of directed lines forming the crossing at the
coincidence point as is depicted in Figure 11 (bl).

(a2) (b2)

Fig. 11. The coincidence crossing in one and two dimensions. (a) shows the one
dimensional two-path crossing and (b) shows the flat and lifted version of the
four-path crossing of the two-dimensional case.

Depending on whether or not one of the conditions (1) and (2) hold, the
coincidence point will intersect two or four otherwise disjoint loops away from it
in both directions. The positions of coincidences cannot be as simply connected
to reflections as in the one-dimensional case, but are easily observed on the torus
topology. If we ascribe an overall loop-length, at least one such coincidence point
will persist at the original location. Under what conditions more coincidence
points exist is an open question. The length measures of all four path components
need to match and coincide in the projected plane. Alternatively one can say
that the knot doesn’t persist under perturbation. This is illustrated in Figure 11
(b2) where one path is perturbed in the lifted space and then projected back.
Notice that the coincidence does not persist. While in the one-dimensional case,
equal length points from the reflection will always be forced by the projection
into a point (see Figure 11 (al-a2)), this is not the case in the plane. Hence it
is a rather special condition as intersection points of trajectories constitute a
sparse discrete set.
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Conclusions

We discussed aspects of the topology of loop dynamics in one and two dimen-
sions as they relate to effects of boundaries, excitation paths and disturbance
coincidences of transportation type physical models for sound synthesis. Certain
properties can be read immediately from such topologies without reference to
the details of the dynamics involved.
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Abstract. The aim of this work is to use subjective evaluations of
sounds produced by a piano synthesis model to determine the perceptual
influence on phenomena involved in sound production. The specificity of
musical sounds is that they are intended for perception and judgments
by human beings. It is therefore necessary, in order to evaluate the acous-
tic qualities of a musical instrument or a sound model, to introduce a
research approach which takes into account the evaluation of the sound
quality by human beings. As a first approach we synthesize a number
of piano sounds. We then evaluate the quality of the perceived acous-
tic signal by questioning a group of persons. We hereby try to link the
model’s parameters to semantic descriptors obtained from these persons
and to more classical perceptual signal descriptors. This approach should
give a better understanding of how the model’s parameters are linked to
cognitive representations and more generally give new clues to cognitive
descriptions of timbre of musical sounds.

1 Introduction

The piano is a complex instrument with a large number of mechanical elements,
the majority of which contribute to the sound production. The physical char-
acteristics of these elements together with their interaction influence the timbre
of the piano sound. Thus, in order to give a precise description of the behavior
of this instrument and effectuate a satisfactory sound synthesis, the totality of
the physical phenomena that are part of the sound production ideally should
be taken into account. However, due to the complexity of the sound production
system, this is not possible. We therefore propose, thanks to sound modelling
and synthesis, to determine the most important perceptual phenomena related
to the sound production system and to evaluate the importance of each of them.
This approach hopefully will give a better understanding of the relation between
the physical behavior of the instrument and the perception of its sound quality,
and hereby give clues to how the piano model can be simplified without loss of
quality. This is crucial for the conception of high-quality synthesis models that
are to be run in real-time.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 232-245, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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As a contrast to non-intentional noises (or sounds) generated by different
sources and generally considered as annoying, musical sounds are produced to
be perceived and appreciated by human beings. Thus, in order to evaluate the
sound quality, it is necessary to look for “subjective judgments” given by a num-
ber of subjects (professional musicians, amateurs or instrument makers) that
listen to and compare the sounds. Although classical psychophysical approaches
have been used for a long time to elaborate subjective evaluation methods, the
analytic and parametric character of the sound samples that generally are im-
plied in the tasks that the subjects are asked to perform, does not seem appro-
priate to the musical sounds that are studied here. The subjective evaluation
used in psychoacoustics is generally based on stimuli which are analytically de-
scribed within a multidimensional space given by physics. Such an approach
mainly investigates low-level processing such as perceptual thresholds rather
than high-level processing of complex sounds such as musical samples that can-
not be reduced to a set of values identified by two or three physical dimensions.
Although each stimulus is given by a unique physical description determined by
the parameters of a physical model, there is a multitude of heterogeneous and
poorly known principles of the organization of global perceptual judgments. In
particular, the perception of timbre of a musical instrument is not only related to
sensations linked to the characteristics of the physical signal, but also to criteria
associated to interpretation processes and to knowledge achieved in a particular
cultural community. We have therefore deliberately chosen to take these “high
quality” characteristics into account when modelling the acoustic qualities of
piano sounds. This means that global judgments are considered, referring not
only to what is perceived in an analytical listening condition, but also to the sen-
sation that the subjects approve as a result of their personal experience, their
knowledge and their expertise.

To obtain this subjective evaluation, we used a methodology that has al-
ready been validated on visual and olfactory stimuli [1,2]. This methodology re-
lies on theoretical assumptions regarding cognitive categories and their relations
to language [3]. The psycholinguistic analysis of verbal comments that subjects
produce as answers to acoustic stimulations can be considered as an access to
cognitive representations. We therefore processed a free categorization task: sub-
jects were asked to freely classify the stimuli according to personal criteria, and
to comment their final classification.

The free categorization method has a theoretical frame which is adapted to
the rather unknown character of cognitive structures of musical objects [4,5,6].
As a contrast to estimation methods where subjects are asked to adapt their
judgment to a pre-defined scale, the tasks of our method make it possible to
induce properties of pertinent physical stimuli (not necessarily known) of the
cognitive representations. In fact, the subjects are given the freedom to choose
their own subjective measure to describe the stimuli. Thus, we are making the
hypothesis that for the same class of rather complex sounds (for instance different
sounds from the same instrument), subtle timbre variations can be identified
from a semantic analysis of the descriptions given by the subjects although
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they are difficult to distinguish by more classical descriptors (obtained from the
conceptualization of physical science). In fact, as Jensen mentions [7], there is a
need to study subtle timbre variations within the same instrument since several
timbre parameters often are more similar for sounds from different instruments
with the same pitch than for sounds from the same instrument with a different
pitch. Hence, the comments from the subjective evaluations will make it possible
to discover different domains of knowledge involved in the evaluation of sound
quality as a function of the subjects’ different expertise.

In the first part of the paper we shortly describe the main physical phenom-
ena involved in the piano sound production and the model we use to produce the
set of stimuli. We here focus and confront two features of piano sounds: inhar-
monicity and “phantom” partials. We then show how classical timbre descriptors
(centroid and spectral flux) may be used to characterize each stimulus. Finally,
we describe the categorization task and give some preliminary results leading to
a discussion on how the different cognitive categories are related to the model
parameters.

2 The Synthesis Model and the Control Parameters

The piano consists of a large number of components, each one having a role
that is more or less important to the sound production mechanism. The piano
is a struck string instrument. Each note can use either one, two, or three strings
with physical properties that differ from one note to another. The resulting tim-
bre depends namely on the interaction between the hammer and the string, the
coupling between the strings, and the way in which the sound radiates from
the soundboard. Many studies (see i.e. [8,9]) have described the behavior of
the varied elements of the piano and we here refer to those publications for a
more precise descriptions of the acoustics of this instrument. Different types of
sound synthesis models of the piano simulating phenomena involved in sound
production have been proposed [9,10,11,12,13]. Signal models are generally com-
putationally efficient enough to run in real time and can be very accurate in
reproducing the sound of an existing piano. However, these types of models fall
short when it comes to incorporating the player into the control-instrument loop.
Since they make no direct link between the player’s actions and the physics of the
instrument, important playing conditions have no effect on the produced sound.
Physical models on the other hand, have the advantage of simulating the inter-
action between player and instrument, although this comes at a computational
cost (though this cost is becoming less of an issue as computers become increas-
ingly powerful). The parameters of physical models are difficult to accurately
estimate from measured signals, and their sound quality often is poorer than
for signal models. The quality of the synthesis depends on how accurately the
acoustic system is taken into account in the physical model. Though algorithms
are becoming more efficient and computer computation ever more powerful, the
balance between sound quality and algorithmic complexity is still delicate. Thus,
one of the first motivation of this study is to obtain a classification of the dif-



Perceptive and Cognitive Evaluation of a Piano Synthesis Model 235

ferent phenomena involved in piano sound production. This classification is of
great importance for the perceptual quality of real-time physical models.

Here, we would like to confront the perceptual effect of two phenomena in-
volved in sound production: the string stiffness and the tension modulation,
which respectively lead to the inharmonicity of the piano spectrum and the so-
called “phantom” partials. Inharmonicity is a well-known characteristics of piano
spectra. The “harmonics” of the piano sound are not exact integral multiples of
the fundamental frequency. The whole spectrum is stretched and its compo-
nents are called partials. This inharmonicity contributes to the piano tone and
is mainly responsible for its specificity [16]. The stretched tuning of piano strings
can be almost entirely attributed to their inherent stiffness [17], which leads to
a dispersion of waves during the propagation. For small stiffness, the modal
frequencies of the string are [16]:

fn :nfO\/1+Bn2 (1)

where f,, is the modal frequency, fy the fundamental frequency, n the partial
index and B the inharmonicity factor.

The models commonly used to simulate piano string vibrations take into ac-
count the propagation of transverse waves (including stiffness and losses), leading
to a spectrum of inharmonic partials. However, a close inspection of Fourier spec-
tra of recorded piano sounds shows that a number of partials cannot be related
to the transverse modes of the string and are not foreseen by the linear theory.
Moreover, those partials seem to contribute to the piano timbre, especially for
low-pitched notes. Studies dealing with this phenomenon make the assumption
that the appearance of those partials, also called “phantom” partials [18] (we
will use this terminology in this article, even if this is maybe not the most ap-
propriate term) are somewhat related to tension variation in the string. Due to
transverse waves, the shape of the string changes during the motion, and the
tension is modulated. This modulation introduces a coupling between the trans-
verse and longitudinal modes of the string, giving rise to new partials [19,20].
Both of the phenomena described previously affect the frequency, amplitude and
damping of the spectral components of a piano sound. We here investigate how
they contribute to the perception of the piano timbre and how their combination
affects the perceptual judgement of the listeners.

The model we use is based on analysis and synthesis techniques described
in [13]. For this test, we worked with only one piano note (B1), recorded in an
anechoic room. This note corresponds to two strings tuned to a very close pitch
and thus, the recorded sound exhibits beating phenomena. Moreover, we local-
ized many “phantom” partials on the corresponding spectrum. We accurately
analyze the original sound using technique based on time-frequency representa-
tion and parametric methods given in [13,21]. As a first step, we estimate the
modal parameters of each partial of the inharmonic spectrum, i.e. two frequen-
cies, damping coefficients and initial amplitudes. In a second step, we localize
the “phantom” partials (using an automatic algorithm we have developed) and
estimate the corresponding modal parameters. The synthesis model is made of
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two different parts: a digital waveguide model [14] modelling the propagation
of transverse waves in the string and an additive signal model allowing to in-
troduce “phantom” partials [15]. This kind of signal model exhibits three main
advantages for the needs of the listening test we would like to carry out. First,
the synthesized sound is perceptually extremely close to the original sound: it is
actually important that the subjects could not identify those synthesized sounds
as “synthetic” stimuli. Secondly, the signal model offers the possibility of mod-
ifying independently the contribution of each phenomena and thus allows to
regularly increasing different parameter values. Third it is possible, at least for
partials coming from transverse waves, to modify their frequencies with respect
to physical laws by taking into account inharmonicity law [16] and attenuation
law (the physical descriptions of the “phantom” partials found in the literature
are not accurate enough to allow a physical control of their modal parameters).

Using this model, we have synthesized sounds for different inharmonicity
factor and different level of “phantom” partials. B is the inharmonicity factor
(with By = 2.4176.10~* its value for the original sound) and G is the global
gain (G is the value of the original sound) mixing “phantom” partials with
“regular” partials. We obtained 17 stimuli as shown on Fig. 1 (labelled 1B, 2A,
2B...). The variation range of the two parameters has been chosen to cover a
wide range of perceptual effects, from a sound with very weak inharmonicity
and no “phantom” partials (2A) to a sound with exaggerated inharmonicity and
a high level of “phantom” partials (5D). 4B is the closest sound to the original
sound 1B from the model parameters point of view.

3 Timbre Description Using “Classical” Descriptors

Timbre is probably one of the the most well-known and least understood at-
tribute of the quality of a sound. It refers to those aspects of a sound other
than pitch, loudness, perceived duration, spatial location and reverberant envi-
ronment [22] and can be regarded as the feature of an auditory stimulus that
allows us to distinguish one source from another when the other five percep-
tual features are held constant. Thus timbre can be considered as the “tonal
color and texture” [23] that allows us to distinguish two different instruments
playing the same note. Although a lot of work has been done to describe timbre
[24,25,26], it is not yet a fully understood component of auditory perception. One
of the reasons for this is probably the fact that the cognitive processes of timbre
classifications depend on the experience of each listener [3]. This is one of the
motivations behind our attempt to link timbre to semantic descriptors by means
of a piano synthesis model in order to approach a cognitive description of timbre
of musical sounds. This is particularly important when studying subtle timbre
variations within the same instrument since several timbre parameters often are
more similar for sounds from different instruments with the same pitch than for
sounds from the same instrument with a different pitch [7]. As a starting point
to this investigation we will study some parameters that are traditionally used to
describe timbre. Some of the most significant parameters commonly mentioned
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Fig.1. The stimuli as a function of the inharmonicity factor B (with By =
2.4176.10~* the original value) and the global gain G of the spectral “phantom”
components (G = 0 means no “phantom” components, G = Gy means the same
level of “phantom” components as for the original sound). Spectral centroid in
Hz for the sixteen synthesized sounds and the original sound.

in the literature are the spectral centroid, the attack time, the spectral flux and
the spectral irregularity [25]. We have chosen to calculate two of these timbre
descriptors from the 17 synthesized piano sounds that have been made for this
particular study, namely the spectral centroid and the spectral flux. Since the
attack time of the synthesized sounds used in this study is the same for all the
piano tones, and since the irregularity of the spectrum (variations between the
amplitude of the spectral components) is constant for the 17 sounds, we have
here been considering the spectral centroid (SC) and the spectral flux (SF). The
spectral centroid is defined as [24]

SC = %fik, (2)

(with k the partial index and Ak the spectral partial amplitude) and is often said
to be related to the brightness of the sound. The spectral flux is a mean value of
the variation of the spectral components as a function of time [25]. This means
that it describes the attenuation of the spectral components which is of great
importance for the perception of the sound. In this article we have chosen to
calculate the spectral flux from successive centroids estimated at different times,
meaning that this parameter can be considered as a time varying brightness. As
mentioned in Sect. 2, the 17 different sounds are obtained for the same pitch, by
varying the inharmonicity B and the phantom components represented by the
gain factor G.
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Fig. 2. Spectral flux represented by the spectral centroid as a function of time
for the 17 different sounds.

Fig. 1 shows the values of the spectral centroid for the different synthesized
sounds (mean value for 6 ms of the sound). As expected the centroid increases
for increasing inharmonicity since the spectral components get more and more
separated, and it also increases when the gain factor increases, since there are
more and more “phantom components” for higher frequencies. We can also notice
that stimuli 1B has a higher value of its spectral centroid. Fig. 2 shows the
spectral flux represented by the spectral centroid as a function of time. One can
observe that during the attack of the sounds (1st second), five different groups
of sounds can be distinguished, namely 5D-5C-5B-1B,4D-5A-4C-4B, 4A-3D-3C-
3B, 3A, and 2D-2C-2B-2A. These groups are rather coherent with the physical
parameters since they more or less correspond to lines in the table (Fig. 1). This
seems to indicate that the spectral flux varies with Gy (gain of the phantom
partials), but does not depend on the inharmonicity factor. After one second
there is no specific group of sounds to observe and the spectral flux almost
becomes the same for all of the synthesized sounds. The spectral flux of the
original sound is higher than those of the synthesized sounds in the last part
of the sound, but this doesn’t seem to be perceptually important since listeners
tend to pay more attention to the attack of the sound (as we will see in the next
section).

4 Free Categorization Task: Protocol and First Results

The subjective evaluation was carried out on subjects using a free categorization
task of the stimuli described above. Subjects were asked to freely sort the 17
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piano sounds, symbolized by a schematic speaker on a screen (see Fig. 3) into
groups and subgroups, and when the task was completed, to write down the
reasons of their choice. When clicking on the speaker, the subjects could listen
to the sound (through two “real” speakers) and interrupt it at their convenience
by clicking again. The subjects could form as many categories as they wanted.
One example of such a categorization is given in Fig. 3 below (results for subject
SX, a pianist).

Class 3
Class 2 .
. . Richer sounds
. Bverage rich sounds
B 3 stands out, not much 5 . harmao 3 stands out, some 5, much 6

24 p
- sc

34
@ » (f~4c

L&LL

44 Q © g (f - 5
S5& Class 3a
Class 2a - plain
Class 1
. Poorest sounds cleax, balanced
. harrao. 3 stands out, abit of 5
. hfter listening to other classes, '(I -
the pitch seeras lower (I don’t 4 D
thing it is actually lower, at least
for the first harraonic) § = Class b
. Iuffled, badly balanced, « too ) . harrao 10 or 11 very present ?
low pitch » . hollowr
Class 2b
. & bit distord (inharmonicity?)
. round

§- §- o

Class 2¢ Class 3¢
. & Iot of distortion that appears in the high : S

b £a kind of a blowi . . & bit of distortion
range because of a kind of a blowing noise . plain, < oo » rich

Fig. 3. Results of the free categorization task given by SX, a pianist.

The experiment is presently running and we here present the results obtained
on 21 subjects, 7 pianists, 8 musicians non-pianists and 6 non-musicians. The
full experiment will include at least 30 subjects, in order to contrast the different
principles of categorization involved in the task and to elicit the characteristics
that structure the cognitive specificities of these diverse populations. We there-
fore present the categories and comments of a pianist and a non-pianist (SX and
SY as reported in Figs. 4 and 5) mapped on the matrix of controlled physical
parameters involved in the construction of the experimental stimuli. As shown
in Fig. 4, the first level of cognitive categorization for the pianist subject SX fits
the physical criterion of inharmonicity, and the categorization that can be at-
tributed to “phantom” partials is subordinate at a second level of categorization.
However, such a categorical structure is not observed on the non-pianist subject



240 Julien Bensa et al.

SY (Fig. 5) where, except for the lowest value of the inharmonicity factor, the
3 categories (2B, 2C), (2D, 5B, 5C and 5D), (3C, 3D, 4C and 4D) integrate the
two physical dimensions with respect to their values on a single level. These two
preliminary results favor the hypothesis that criteria of categorization highly
depend on subjects’ experience and therefore that different cognitive categories
can emerge from the same set of stimuli univocally described in terms of physics.
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Fig. 4. SX (pianist) categorization projected on the representation of the sound
samples as a function of the model parameters.

We can also already notice (as shown on Fig. 5) that the mapping of the cog-
nitive categorization onto the physical description is not continue. 2D and 5D
are grouped together within the same subcategory even if they are constructed
on two extreme values of the “phantom” partial level. Considering the verbal
comments, this “incoherence” means that subjects categorize the two stimuli to-
gether because they are “synthetic” or “bizarre”, that is, they are different from
what can be considered by the subjects as “common” sounds of a “good piano”.
In other words, cognitive categorization not only relies on “intrinsic” proper-
ties of the stimulus but also on similarities or discrepancies from “common”
stimuli that the subjects frequently encountered and therefore experienced and
memorized. These observations indicate that, for some values of a given physical
parameter (here from 1,3*B0), the cognitive categorization is not related in a
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monotonous manner to a physical parameter, but operates according to mental
representations elaborated from the subject’s previous experiences. Moreover,
the traditional timbre descriptors of the signal proposed in Sect.3 can not ex-
plain the categorization given by the subjects. We can thus find stimuli of very
different centroids or spectral flux within the same category. The non-pianist
subject sometimes seems to choose to group stimuli with respect to their in-
harmonicity (group 2A, 3A, 4A, 5A), sometimes with respect to the similarities
of their centroids (group 3C, 3D 4C, 4D). The relation between groups given
by the first seconds of the spectral flux and the subject categorization is not
trivial. Thus, 1B and 4B have been grouped whereas their centroids as well as
their spectral flux are different. These observations indicate that cognitive cate-
gorization can give us new ideas when looking for meaningful timbre descriptors
to distinguish similar sounds. As already mentioned the cognitive categorization
partly relies on similarities or discrepancies from “common” stimuli, meaning
that one possible timbre descriptor could be related to a predefined distance
from a reference sound.
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Fig. 5. SY (musician non-pianist) categorization projected on the representation
of the sound samples as a function of the model parameters.

For the full experiment on a higher number of subjects, we will have to
identify the semantic properties attributed to the same physical descriptions by
subjects with different expertise and knowledge. In particular, we could like to
verify the hypothesis stipulating that the categorization given by the experts
(pianists) are more closely linked to the structures described by the physical
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parameters, and especially when it comes to the inharmonicity, while the non-
experts used a different categorization strategy associating physical parameters
of the model with a semantic interpretation integrating other criteria like the
spectral centroid. The analysis of the verbal comments will be used to complete
our interpretation.

As opposed to free audio categorization tests which have been done before,
where subjects tend to classify stimuli regarding to the nature of the supposed
source which produced them (door shock, engine noise [27]), stimuli are here in
general grouped with respect to their perceptive properties (“muffled”, “broad”,
“round”...). This is due to the fact that timbre variations, and consequently
categorization levels, are here extremely subtle. The qualitative properties of
stimuli coming from a same source (piano), are treated in an “intensionnal” way.
Thus, the aim is here to listen to the sound itself as a contrast to an indicial
way of listening [28]. Certain subjects sometimes can refer to a particular kind
of source like “synthetic piano” as a qualification of a stimulus, meaning that
they base the criteria of extensional classification of the sound producing system
rather than on the sound itself.

If we look closer at the results of the free categorization task, for different
values of our two “physical dimensions”, we can state that

— when subjects judge the sound as a function of the inharmonicity, they
use expressions like “muffled”, “poor” and “mate” for the least inharmonic
sounds, “between muffled and clear”, “average rich sound” for the medium
inharmonicity and “clear” or “distorded”, “richer sound” for a maximum
value of inharmonicity. An increase in inharmonicity therefore seems to
“brighten” or “clear” the sounds from a perceptual point of view.

— when subjects judge the sound as a function of the “phantom” partials
(which corresponds to the second categorization level for pianist subjects),
the sounds with few partials are classified as “hollow”, “damped”, while for
higher amounts of “phantom” partials they are classified as “clear”, “round”,
“plain”, “balanced” and finally for the maximum value of “phantom” partials
as “slightly metallic”, “aggressive”. An increase in the number of “phantom”
partials therefore seems to converge with an increase in the inharmonicity,
constructing categories of more and more bright sounds.

The second criterion (presence of “phantom” partials) contributes to the con-
struction of categories in which the tendency “muffled” or “dark” given by the
weak levels of inharmonicity is corrected and renormalized. Finally, for the cate-
gory constructed with a strong inharmonicity, the extreme stimuli are considered
as “synthetic”. Again these terms demonstrate the important gap between the
norm of the human category jugdment.

5 Conclusion and Perspectives

This study shows the major difference between physical and cognitive descrip-
tions, i.e. the dimensional character of the first one and the categorical character
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of the other. This difference can be seen by the deviations from the value which
is considered as “normal” (sound close to the original one) within the same
category of values in different registers. Thus, from a certain “level”, the catego-
rization induces a discontinuity compared to the physical parameters. From this
separation in their categorical belonging, the stimuli are classified as a function
of their distance to a prototype sound (either previously memorized from the
experiences of the subjects, or constructed as a mean element within the group
of stimuli). In other words, different categorical structures can correspond to the
unique description of the stimuli in the physical space. These structures depend
on different strategies that supposedly rely on the variations in expertise and ex-
perience of the different subjects. Thus, the non-pianist subjects construct their
categories differently from one part to the other of the inharmonicity level. At
this level the categorization is effectuated from the stimulus sharing the values
of the two parameters of the model taken simultaneously. When the subjects
possess a very high degree of expertise, the processes of categorization are no
longer related to the qualitative properties of the signal, but on extensional cri-
teria belonging to categories of objects with a close differentiation (here different
piano types). It is therefore necessary to pay attention to the characterization of
different groups of subjects. We have also noticed that the use of this diversity
of categorization processes was sensitive to the characteristics of the stimuli.
Thus, certain stimuli are for instance too far from the prototype, too atypical,
have a construction that is too distant for the subjects to be able to constitute a
representation of a “real” sound and correspond to an indication of a source. In
such cases they are treated analytically, directly on the properties of the signal
(already observed in visual experiments [3]). When a larger number of subjects
are to be tested, it will therefore be necessary to take care of the validity of
the representations of the different stimuli related to the “natural” sounds. We
finally will strive to find new descriptors of the acoustic signal which represent
categorical structures of the cognitive analysis, regrouping all of the parameter
values that do not necessarily correspond to the same physical dimension. Fi-
nally, the coupling between the categorical analysis and the verbal comments
will make it possible to extract semantic descriptors qualifying the perceptual
effects of the two phenomena studied here. This will further give new clues to
the definitions of new timbre descriptors adapted to subtle timbre variations of
piano sounds.
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Abstract. In this paper we analyze clarinet sounds produced by a syn-
thesis model that simulates the physical behavior of a real clarinet, in
order to find a relationship between the clarinet timbre and the inter-
pretation. Sounds have been obtained by varying two important control
parameters of the synthesis model, namely the blowing pressure and the
aperture of the reed channel. These parameters are also used to con-
trol real reed instruments. Four different timbre descriptors have further
been applied to the sounds in order to investigate the timbre evolution
as a function of these control parameters. The validity of the synthesis
model has been verified thanks to an experimental setup with an arti-
ficial mouth, making it possible to generate and record sounds from a
real clarinet while controlling the pressure and aperture of the reed chan-
nel. A relationship between the timbre and the physical behavior of the
instrument has been found thanks to the physical synthesis model.

1 Introduction

The aim of this study is to use a physical synthesis model of the clarinet to
get a better understanding of how a clarinet player controls the timbre dur-
ing the play. For this purpose we use an existing synthesis model developed in
our research group which closely simulates the physical behavior of a real instru-
ment and which generates synthesized sounds that are extremely close to natural
clarinet sounds. Initially the synthesis model was developed as a new tool for
musicians and was adapted to a specific Yamaha WX5 controller that measures
the aperture of the reed channel, the blowing pressure and the finger position.
These parameters constitute the most important set of controls that a player
uses on a real instrument. We have chosen to study the evolution of the timbre
as a function of the aperture of the reed channel and the blowing pressure, in
order to find out how the player controls the timbre of the instrument during the
play. The advantage of using a synthesis model rather than a traditional instru-
ment to study the timbre is that it gives access to calibrated and reproducible
values of the control parameters and to a physical interpretation of the timbre
behavior. Obviously the synthesis model has to be validated to make sure that
it behaves like a traditional instrument with respect to the values of the physical

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 246—259, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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control parameters. This was done by generating sounds from a real clarinet
with an artificial mouth making it possible to calibrate the reed aperture and
the blowing pressure like in the synthesis case. The sounds recorded from the
real instrument globally depended on the control parameters in a similar manner
as those from the synthesis model. This study also represents a starting point
for future studies on interpretation, since the control device makes it possible to
detect the values of the control parameters that a musician uses when playing
this new instrument. This means that the instrument can be used as a tool to
understand how the musician uses the timbre as a part of the interpretation.

The paper starts with a brief introduction of the physical model and its
control parameters. In section 3, the timbre descriptors that were applied to the
sounds are presented. Section 4 presents the results and links them with the
physics.

2 Simplified Physical Model of a Clarinet

In this section, we briefly present the physical model used for the sound synthesis.
It is made of three coupled parts. The first part is linear, and models the bore
of the instrument using the impedance relation between the acoustic pressure
and flow at the entrance of the resonator. The second part is nonlinear, based on
the classical Bernoulli equation, and models the interaction between the acoustic
velocity and the pressure differences between the mouth of the player and the
entrance of the resonator. The acoustic flow is the product of the acoustic velocity
with the aperture of the reed channel, which is linked with the reed displacement.
The reed displacement is modeled as a pressure-driven single mode oscillator.
In what follows, we use dimensionless variables for the pressure, flow, and reed
displacement, according to [Kergomard, 1995].

2.1 Bore Model

The first linear part of the physical model corresponds to the resonator of the
instrument. We here consider a highly simplified geometry made of a cylindrical
bore. In particular, we neglect the role of the embouchure, the toneholes, the
radiation losses and the register hole. Whatever the complexity of the bore ge-
ometry, its role on the sound generation process is fully determined by its input
impedance. In the Fourier domain, the impedance links the acoustic pressure P,
and flow U, in the mouthpiece. For the cylindrical geometry, assuming that the
radiation impedance vanishes, the input impedance is classically written as:
P.(w

Ze(w) = UZEW; = itan(k(w)L) (1)
Here, U, is normalized with respect to the characteristic impedance of the res-
onator: Z, = gf, S, = mR%. R is the radius of the bore: R = 7.1072 in the
clarinet case. This radius is large with respect to the boundary la};%rs thick-
w 1
: 2

nesses and the wavenumber k(w) is then expressed by: k(w) = ¢ acw'/?,
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where a = Rc23/2 (\/lv + (2’ — 1) \/lt). Typical values of the physical constants,
in mKs units, are: ¢ = 340, I, = 4.107%, [, = 5.6.107%, &7 = 1.4, p = 1.3.

2.2 Reed Model

We use a classical single mode reed model. It describes the displacement x(t) of
the reed with respect to its equilibrum point when it is submitted to an acoustic
pressure p.(t):

1 d?x(t)  q dz(t)

2 dp T ) =) )

where w, = 27 f, and ¢, are respectively the circular frequency and the quality
factor of the reed. Typical values for these parameters are: f. = 2500Hz and
qr = 0.2.

In the Fourier domain, this last expression becomes:

2

r w? + WqrWr
which shows that the reed displacement is a low-pass and band-pass filtered
version of the acoustic pressure.

2.3 Nonlinear Characteristics

The nonlinear characteristics is the most important part of the model, since
it is the engine of the self-oscillations production. The simple model used here
is based on the stationary Bernouilli equation that links in a nonlinear way the
acoustic velocity with the pressure difference between the bore and the mouth of
the player. The acoustic flow entering the bore is then the product between the
reed channel opening and the acoustic velocity. By using dimensionless variables,
the acoustic pressure p.(t), the acoustic flow u.(t) and the reed displacement x(t)
are linked in a nonlinear way at the input of the resonator as follows:

ue(t) = g(l +sign(L =~ +2(t)))sign(y —pe(t))(L =7 + () v/ Iy = pe(t)] (3)

The parameter ¢ characterizes the whole embouchure and takes into account
the lip position and the section ratio between the mouthpiece opening and the

P Srwy?

unit length and the width of the reed. { is proportional to the square root of the
reed position at equilibrium H and represents an important control parameter
on which the player can act. Common values of ¢ for the clarinet are between
0.2 and 0.6.

The parameter v is the ratio between the pressure inside the mouth of the
player and the pressure for which the reed closes the embouchure in the static
case: 7 = g;;, where py; = Hw?p, is the static beating reed pressure. In a

resonator: ¢ = vV H \/ 2w where - and w respectively denote the mass per
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lossless bore model, v evolves from :13 which is the oscillation step, to % which

corresponds to the position at which the reed starts beating.

The parameters ¢ and ~ are the most important continuous performance
parameters since they respectively represent the way the player holds the reed
and the blowing pressure inside the instrument.

Figure 1 represents the non linear characteristics of the reed for the limit
case wy = 00 ( ¢ = 0.3, = 0.45). In this case, the displacement x(t) of the reed
reduces to the acoustic pressure p.(t) itself: the reed activity can be considered
as a single spring. As we shall see in the next sections, such a situation occurs
when the frequency support of the acoustic pressure remains smaller than the
reed resonance frequency. This plot shows one discontinuity at its left side, cor-
responding to a cancellation of the acoustic flow for p. = * = v — 1 when the
reed closes completely the input of the bore, and one infinite derivative at its
right side for p. = 7y corresponding to the limit between a positive and negative
acoustic flow.

Fig 1: Nonlinear characteristics of the reed (ue as function of p.)

2.4 Coupling of the Reed and the Resonator

Combining the impedance relation, the reed displacement and the nonlinear
characteristics, the acoustic pressure, acoustic flow and reed displacement in the
mouthpiece can finally be found by solving the following set of equations:

B

i3/2

P(w) = Zo()U, () = i tan <WCL - acwl/q) U.(w) (5)

ue(t) = F(pe(t), z(t)) (6)

The flow diagram corresponding to this system of three coupled equations, in
which the reed and the non-linearity are introduced as a nonlinear loop linking
the output p. to the input u, of the resonator, is shown in figure 2.

From the pressure and the flow inside the resonator at the moutpiece level, the
external pressure is calculated by the relation: peq¢(t) = J (pe(t) + ue(t)). This
expression corresponds to the simplest approximation of a monopolar radiation.
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Fig 2: Nonlinear Synthesis Model

The digital transcription of equations (4,5,6) and the computation scheme
that explicitely solve this coupled system is achieved according to the method
described in [Guillemain, 2002].

3 Caracterisation of Timbre by Classical Descriptors

Timbre is a component in auditory perception which has been studied and de-
scribed by several authors [McAdams, 1995][Menon, 2002][Grey, 1977][Jensen,
1999]. Tt is probably the most important feature of auditory events, and yet we
do not have a precise definition or a complete understanding of timbre. It is
often described by an “anti-definition” commonly referred to as those aspects of
sound quality other than pitch, loudness, perceived duration, spatial location,
and reverberant environment [McAdams, 1993]. For this reason, we don’t take
into consideration the loudness in this study, though this attribute is obviously
an important part of the interpretation. More concretely, timbre can be consid-
ered as the principal feature that allows us to distinguish different instruments
playing the same note. It is generally assumed to be multidimensional and is
often described by a 3 dimensional space. [Grey, 1977] defines the 3 dimensions
as spectral centroid, attack time and the irregularity of the spectrum, while
[McAdams, 1995] in some studies uses the mean value of the variation of the
spectral components as a function of time (spectral flux) as a descriptor for
the third dimension. Authors seem to agree that the spectral centroid and the
attack time are important timbre descriptors, while the last dimension is more
ambiguous. As mentioned in the introduction, the aim of this study is to find
a relationship between the timbre and the physical behavior of the instrument
in order to get a better understanding of the relationship between timbre and
interpretation. The sounds that are used in this experiment are generated by the
synthesis model based on a physical model simulating sounds close to natural
clarinet sounds and suimmarized in section 2. This model has been constructed
to propose a new tool for musicians and can be piloted by a wind-like instrument
controller. Since we restrict ourselves to the use of two parameters to control the
sound (reed aperture, blowing pressure), we have chosen to study the timbre
evolution for different values of these control parameters for a sustained sound
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with a fixed length of resonator. Actually, these two control parameters are ex-
plicitely related to the parameters ¢ and ~ described in section 2. The values of
the control parameters were chosen within a “reasonable” range, meaning that
we only considered sounds that corresponded to a common play.

In the clarinet case where the amplitudes of the spectral components vary a
lot, especially the ratio between odd and even harmonics, the spectral irregular-
ity which represents a measure of the amplitude differences between successive
components seems to be important [Jensen, 1999]. Since we restrain this study
to sustained sounds, the spectral flux will not be important since the spectral
centroid remains constant during the stable part of the sound. Thus, as a first
approach we have studied the evolution of the attack time, the spectral centroid
and the spectral irregularity of the synthesized clarinet sounds with respect to
the physical parameters. The spectral centroid, which is related to the brightness
of a sound, can be calculated from the formulae [Beauchamps, 1982]:

S kA

> Ak

where k is the index of a spectral component and Ay is the amplitude value of
the k' component.

The spectral centroid has been calculated by convolution of the time varying
signal with a hanning window of size 1024 samples, with 50% overlap between
frames. For each frame the centroid is calculated up to the frequency 22050H z.
For each clarinet sound, a centroid value has been obtained by calculating the
mean value of the time-evolving centroid over a duration corresponding to the
second half of the sound (from 0.5 s to 1s), so that the steady state is reached
for all sounds.

The global attack time AT was found by calculating the time elapsed for the
amplitude of the clarinet sound to increase from 10% to 90% of its maximum
absolute value. The individual attack times of the five first harmonics were also
calculated, but these were not found to be significant compared to the global
attack time.

The spectral irregularity (IRR), which is a measure for the amplitude differ-
ence between successive components and which is highly important for clarinet
sounds since it represents the differences between odd and even components, was
obtained from the expression [Jensen, 1999]:

S (Ag — Appr)?
> AR

As already mentioned, traditional timbre descriptors are often insufficient to
describe the subtle timbre variations of the same instrument, and are often more
similar for sounds from different instruments with the same pitch than for sounds
from the same instrument with a different pitch [Jensen, 1999]. As we shall see
in section 4 where the results from the analysis are described, this observation
is confirmed by our approach. It was therefore necessary to look for additional
criteria that would make it possible to distinguish sounds with similar attack

SC =

IRR =
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times, spectral centroids and spectral irregularities, but different timbre qualities.
For this purpose we have proposed a descriptor related to the spectral bandwidth
(SBW). This descriptor is linked to the spreading of the spectral components
and corresponds to the standard deviation of the curve defined by the energy
envelope of the symmetric spectrum for negative and positive frequency values.
This avoids the SBW to be correlated with the spectral centroid.

4 Results

In this section we describe the results of the analysis of the clarinet sounds
generated by the physical synthesis model described in section 2. As already
mentioned we have chosen to vary two control parameters (¢ and ) linked to
the blowing pressure and the reed aperture. Hence, 100 clarinet sounds generated
with the same bore length (L=0.5) (fundamental frequency ~ 171Hz) have been
obtained by varying v from 0.4 to 0.5 (10 different values) and ¢ from 0.2 to 0.5
(10 different values). We first give a description of the timbre variations related
to the different sounds. Then we give a physical interpretation of the observed
results.

4.1 Timbre Variations as a Function of the Control Parameters

In this section we show how different timbre descriptors vary with the reed aper-
ture and the blowing pressure. We have calculated the four timbre descriptors
for the hundred clarinet sounds; namely the attack time, the spectral centroid,
the spectral irregularity and the spectral bandwidth. Figures 3 to 6 show the
descriptors as a function of ¢ and . The two control parameters seem to have
similar effects on the timbre descriptors. Figure 3 shows that increasing ¢ and
increases the values of the spectral centroid. We also see that in several cases the
centroid is the same for different sounds (i.e. different combinations of parame-
ters). For low values of ¢ and 7, these sounds are perceptually similar, while they
are different for higher values. This might indicate that the spectral centroid is
a sufficient descriptor for small parameter values while other descriptors have
to be added for higher parameter values. The spectral centroid does not change
significantly for low values of { and ~, but when the two parameters reach a given
value, the centroid exhibits a steep increase. This is seen best in the contour plot,
Fig 3, where the close lines indicate a sudden rise in the centroid value. Also, the
pressure parameter is found to have a stronger effect on the centroid, giving a
larger global increase than the aperture parameter. For low values of the control
parameters the attack time changes very abrubtly, whereas the attack time is
stable for higher values. The contour plot shows that almost half of the synthe-
sis sounds have an attack time within a 50ms region, which makes the attack
time a rather insufficiant descriptor when high parameter values are used. The
spectral irregularity is the only descriptor that does not act monotonously with
increasing ¢ and . As seen from the 3D graph, an increase in blowing pressure
causes an increase in spectral irregularity, provided that the reed aperture is
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adequately low. Whereas for { values above 0.3, an increase of pressure causes
a slight decrease in irregularity. The overall change in irregularity is more influ-
enced by ¢ than 7, which can be seen from the contour plot, where the contour
lines are partly parallell with the pressure axes.

The results of these descriptors give us an indication of how the different con-
trol parameters influence the timbre. However, for high values of ¢ and  there is
a need to apply an additional descriptor, since the attack time is almost constant
and the spectral irregularity does not change significantly. Sounds with different
control parameter values in the higher regions, which have the same mean spec-
tral centroid, are found to be perceptually different. We have therefore proposed
a fourth timbre descriptor that we have called the spectral bandwidth describing
the spreading of the spectral energy. From 3D representations we see that the
spectral bandwidth is useful as an additional descriptor to seperate sounds of
equal mean spectral centroid, and give a perceptual description of the difference
between these sounds. The spectral bandwidth rises steadily with increasing val-
ues of ¢ and 7y, meaning that the energy in high frequency components increases.
Fig 3 also show that the reed aperture has a considerably larger influence on the
bandwidth than the pressure, as opposed to the spectral centroid where the
blowing pressure has the most influence.

Spectral centrold [Hz] Spectral centroid [Hz]

— . S
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Fig 3: Contour plot and 3D plot of the mean spectral centroid as it evolves for
different values of blowing pressure and reed aperture. The values of v and ¢
evolve respectively from 0.4 to 0.5 and from 0.2 to 0.5.
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Fig 4: Contour plot and 3D plot of the global attack times for the hundred
clarinet sounds, for different values of pressure and aperture.
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Fig 5: Contour plot and 3D plot of the spectral irreqularity, for different values
of pressure and aperture.
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Fig 6: Contour plot and 3D plot of the spectral bandwidth, for different values
of pressure and aperture

4.2 Physical Interpretation of the Timbre Variations

In this section, we consider four different situations, each corresponding to a
particular combination of the control parameters ¢ and +. The first situation (v
small, ¢ small) corresponds to figures (7,11,15). The second situation (y small,
¢ large) corresponds to figures (8,12,16). The third situation (v large, ¢ small)
corresponds to figures (9,13,17). The forth situation (v large, ¢ large) corresponds
to figures (10,14,18).

Several physical phenomena explain the evolution of the amplitude of the
harmonics of the clarinet spectrum. For small values of the two control param-
eters ¢ and 7, the non-linear mechanisms are responsible for the production of
harmonics. Figure 7 (top, resp. bottom) shows the internal flow (resp. reed dis-
placement) as a function of the internal pressure. This plot can be directly linked
to figure 1 describing the non-linear characteristics of the reed. For low values
of ¢ and ~, the reed behaves like a simple spring and moves proportionally to
the pressure (see figures 11,15). In this case the internal pressure and flow have
a frequency support smaller than the resonance frequency of the reed.

For small values of the blowing pressure (parameter v) and increasing val-
ues of the reed aperture (parameter ¢) (corresponding to figure 8, 12, 16), the
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resonance frequency of the reed causes a “formant” to appear in the sound. In
this case, the frequency spreading of the acoustic pressure is higher than the
reed resonance frequency and the reed acts as a pressure amplifier around its
resonance frequency. This can be seen on figure 8 by the hysteresis effect showing
that the flow and reed displacement do not follow the same path when the reed
opens and closes, and on the flow spectrum on figure 16.

For high values of v and small values of ¢ (figure 9,13,17) the important
displacement of the reed provoked by the pressure causes the reed to beat against
the table. This brutally cancels the flow (figure 13) and introduces a singularity
in the sound creating a sudden increase in its brightness. For a given ~ value
the collision between the reed and the table happens for a particular ¢ value,
causing a sudden increase in the brightness of the sound.

For high values of both v and ¢ (figures 10, 14 18), the different mechanisms
observed in the previous cases appear simultaneously. Moreover, the important
variation of the flow compared to the small variation of the pressure when the
reed is completely open causes the spectrum to gain even more components (the
right part of the top curve of figure 10). Indeed, for p.(t) = v, the derivative of
the non-linear characteristics is infinite and a very small variation of pressure
causes an abrupt variation of flow.

Whatever the values of the pressure and reed aperture parameters, since the
input impedance of the bore mainly contains odd harmonic peaks, the internal
pressure p.(t) contains very few even harmonics and always looks like a square
signal. This is visible on figures 15,16,17,18. The even harmonics come from the
internal acoustic flow u.(t) and are produced by the nonlinearity, from the term:
\/fy — pe(t). This nonlinearity explains why the level of even harmonics in the
flow increases when the difference in pressures between the blowing pressure
and the bore pressure (and hence the blowing pressure) also increases. Since the
external pressure is expressed as the time derivative of the sum of the internal
acoustic flow and pressure, the rate of its even harmonics increases with respect
to 7, and hence the spectral irregularity decreases.

9=41117-2333 9=42227=4333
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0.05| 4 0.05|

05 04 03 02 01 0 01 02 03 04 05 05 04 03 02 01 0 01 02 03 04 05

Fig 7(left),8(right): internal acoustic flow (upper part of the figure) and reed
displacement (lower part of the figure) as a function of the pressure for two differ-
ent values of the control parameters v and . Figure 7 corresponds to y=0.4111
and (=0.2333 while figure 8 corresponds to v=0.4222 and (=0.4333.
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Fig 9(left),10(right): internal acoustic flow (upper part of the figure) and reed
displacement (lower part of the figure) as a function of the pressure for two differ-
ent values of the control parameters v and . Figure 9 corresponds to y=0.4778
and (=0.2667 while figure 10 corresponds to v=0.4889 and (=0.4667.
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Fig 11(left),12(right): from top to bottom :internal acoustic flow p.(t), acous-
tic flow u.(t), reed displacement x(t) and external pressure peyi(t). Figure 11
corresponds to y=0.4111 and (=0.2333 while figure 12 corresponds to y=0.4222
and (=0.4333. Horizontal azis in samples.
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Fig 13(left),14(right): from top to bottom :internal acoustic flow p(t), acous-
tic flow wu(t), reed displacement x(t) and external pressure peyi(t). Figure 13
corresponds to y=0.4778 and (=0.2667 while figure 14 corresponds to y=0.4889
and (=0.4667. Horizontal azis in samples.
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Fig 15(left),16(right): from top to bottom :internal acoustic flow p.((w), acous-
tic flow u.((w), reed displacement x((w) and external pressure pegt(w). Figure 15
corresponds to y=0.4111 and (=0.2333 while figure 16 corresponds to y=0.4222
and (=0.4333. Horizontal axis in Hertz.
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Fig 17(left),18(right): from top to bottom :internal acoustic flow p.((w), acous-
tic flow ue((w), reed displacement x((w) and external pressure pegi(w). Figure 17
corresponds to y=0.4778 and (=0.2667 while figure 18 corresponds to y=0.4889
and (=0.4667. Horizontal axis in Hertz.

5 Conclusion

Musical interpretation is an extremely complicated process aiming at generating
emotions to the listener. An interesting question we started to address is how the
timbre variations of instruments are controlled in such a context. For that, we
focused on the clarinet timbre for which accurate physical models running in real
time can be designed. This allowed us to systematically study the way the timbre
of this instrument varies with respect to two important control parameters: the
blowing pressure and the reed aperture, both of them being controllable by the
player. Four timbre descriptors have been studied for this purpose: the spectral
centroid, the attack time, the spectral irregularity and the spectral bandwidth.
All of these descriptors act quasi-monotonously with each control parameter.
This is probably one of the reasons why this instrument allows an intuitive
control of the sound. Another consequence is that given characteristics of the
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timbre can be obtained in different ways by compensating the influence from one
of the control parameters by the other one. This allows for example the brightness
of the sound to be kept constant while changing its richness. Such possibilities
probably are clues to a better understanding of the notion of playability and of
the musical interest of an instrument. Actually, they are widely used by musicians
during a musical performance. Thanks to the use of a realistic physical synthesis
model, one then discussed the relationship between the physics of the instrument
and the timbre. This is an important step towards a better understanding of
what part of the instrument design is allowing subtle sound variations. Even
though this is a preliminary study, we have shown the importance of the two
regimes defined by the free motion and the beating of the reed on the table of the
mouthpiece. These regimes are obtained for control parameters depending on the
mean aperture and the stiffness of the reed, showing the importance of the design
of the embouchure together with a good choice of the reed. Another important
aspect of the timbre is linked to the first eigenfrequency of the reed. Actually, one
has shown how the reed acts on the sound spectrum, increasing the brightness by
accentuating the spectral peaks around the first reed eigenfrequency. The quality
factor of the reed also seems to be of importance for the resulting sound since
it acts on the spectral bandwidth altered by the reed. These conclusions show
the close relationship between the clarinet, the playing and the timbre of the
produced sounds. This leads to interesting possibilities of musical interpretation
as soon as the physical design of the instrument is adequate in the sense that
the control is easy enough and intuitive. Rather than answering the numerous
questions linked to instruments and playing, this study has opened new fields of
investigation. Indeed, an experimental setup using an artificial mouth connected
to a real clarinet made it possible to perfectly control pressure and aperture of
the real instrument just like we did with the synthesis model. This experiment
made it possible to validate the synthesis model and confirmed its close behavior
to a real instrument. This comforted us in our choice of using the physical
synthesis model in our work towards a better understanding of the rules linking
interpretation and timbre variations.
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Abstract. Common music information retrieval methods are based upon
editing distances, reductionism or functional analysis tecniques. We adopt
an approach which looks into a thematic fragment (TF) globally. This
leads to associate a musical graph to each TF which preserves its more
abstract content. Then, necessary conditions for graph inclusion are in-
troduced and we give a similarity function between graphs which allows
to assign different weights to the elements belonging to different graph
powers. The advantage is that graphs catch more musical transforma-
tions than other methods, like permutations of subfragments.

Keywords: melodic similarity, musical graph, graph metric, similarity
function, eulerianity, hamiltonicity, inclusion.

1 Introduction

The most usual queries on musical files are title, author, year of publishing, etc.
However, one may be interested in melodies containing a given sequence of notes
or sequences 'similar’ to a given one: this is called music information retrieval
(MIR).

The main result of our work is a new and useful model that allows the re-
trieval of music contents. In fact it is evident that the increase of files size and
number makes their teatment like pure sequences of bytes quite impossible. On
the contrary, it is necessary to consider the peculiar characteristic of the musical
contest, in other words we are in need of a model. This allows a more precise and
fast retrieval and facilitates the recognition of some particular transformation
the theme could have undergone, like traspositions or inversions.

We are first going to analyse two approaches known in literature: Lerdahl &
Jackendoft’s grammars and Tenney & Polansky’s metrics. Then we will propose
a new approach based on graph theory.
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© Springer-Verlag Berlin Heidelberg 2004



A Graph Theoretic Approach to Melodic Similarity 261

Given a tematic fragment (TF) M on n distinct notes and of lenght m, we
will describe the construction of a musical graph representing M, a weighted
eulerian oriented multigraph G(M) = (Vg, Ag, o, 01,d, p) with n vertices and
m arrows, where Vi has a metric space structure (Vg, d).

Afterwards we define the concept of similarity and give some necessary con-
ditions for the inclusion of TFs by graph invariants and metrics on Vg.

2 Related Work

Here we are going to overview the approaches we have prior analised and that
we consider more relevant in the literature on music information retrieval. Sub-
stantially they can be divided into two classes:

1. reductionistic models
2. computational models

The first category leads to reduce musical information into some ” primitive
types” and then to compare the reduced fragments. The second category is based
upon algorithms which utilize the whole sequences of notes. There isn’t a clear
separation between the two classes. In addition we can say that some methods
cannot be clearly ascribable to the first or second class.

The Psychoperceptive Approach A very interesting reductionistic approach
refers to Fred Lerdahl e Ray Jackendoff’s studies. In 1983 Lerdahl e Jakendoff
([4]) published their researches oriented towards a formal description of the mu-
sical intuitions of a listener who is experienced in a musical idiom. Their work
wasn’t directly related to MIR, their purpose was the development of a for-
mal grammar which could be used to analise any tonal composition. However,
in case of tematic fragments (TFs), it would be possible to reduce the TFs into
”primitive types”, showing formal similarities according to the defined grammar.

The aim is to describe, in a simplified manner, the analitic system of the
listener, i.e. rules which allow the listener to segmentates and organizes a ger-
archy of musical events. On this basis, score reductions are applied, gradually
deleting the less significant events. In this way we can obtain a simplification
of the score and in the meantime we can preserve sufficient information which
allow to mantain recognizability.

The study of these mechanisms, which can be either conscious and inconsious,
allows the construction of a formal grammar able to describe the fundamental
rules followed by human mind in the recognition of the underlying structures of
a musical piece.

The grammar construction is very complex and a complete treatment of the
problem goes beyond our purposes.
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Functional Metrics The approach proposed by Tenney and Polansky ([1],
[2]) founded on the concept of morphology, substantially a finite sequence of
comparable elements.

In this contest melodies are finite sequences, i.e. functions defined on a finite
subset of N and whose values are in mono (Q) or n-dimensional (Q™) spaces,
according to the characterizing parameters.

Thus, distance concepts are those erhedited by metrics defined on (discrete)
functional spaces.

The measure of those distances involves the creation, the recognition and
the analysis of variations and trasformation of morphological parameters like
pitches, onsets, harmonic relations, sequences of timbre related values and, more
generally, any kind of observable related to melody.

As pointed out by Tenney [1], we have to distinguish between statistical and
morphological properties. Generally, statistical are global and time independent,
like the mean value or standard deviation of a parameter, while morphological
characteristics are described by the ’profile’ of parameters and depend on ele-
ments ordering. It is also possible to use statistic measures of parametric profile
as parameters at a higher level (gerarchy of profiles); in this way we can analyse
the melodic profile at different levels by the application of different metrics.

Definition 1. A morphology is an ordered set of elements belonging to the same
ordered set M. The elements in M are identified by M; ,i=1,---,L; L =|M]|.

Some examples of morphologies are pitch sequences, rhythm sequences, har-
monic sequences, etc. (cfr. [1], [2]).

"Distance’” and ’similarity’ used in those contests aren’t well-defined in respect
of the mathematical notion of metric.

Definition 2. Given a set S, a function

d:SxS—R (1)
1s a distance function or a metric if Va, b,c € S holds:
1 d(a,b) >0
d(a,b)=0iffa=b
3 d(a,b) = d(b,a)
4. d(a,b) < d(a,c)+d(c,b).
(S,d) is called a metric space.

Morphological metrics are metrics on morphologies (metrics on ordered sets).

Metrics on spaces of real valued functions are useful models for morphological
metrics. For example, given two continuous real valued functions f(t) e g(¢),
defined on [m, n], there are two intuitive amplitude metrics:

d(f,9) = sup{|f(t) = g(t)|} (sup-metric) (2)
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and
d(f,g) = /m |f(t) — g(t)|dt (amplitude metric) (3)

Working in discrete spaces, the integrals will be replaced by sums.

By replacing f(t) and ¢(t) with their derivatives of any order, Tenney and
Polansky obtained metrics by measuring the mean amplitude difference of the
corresponding rate of changement of the two functions. For discrete functions
(like morphologies) the derivative is substituted by the difference function of
first (second, third, ---) order.

Polansky ([2],[3]) analises in detail a lot of interesting functional metrics,
ordered and non ordered, with some applications to melodic sequences.

However this approach is, in our opinion, quite distant from the music itself.
We think that it is not so natural to consider melodies in the same way of func-
tions; in fact a large part of musical information are irreduceble to the concept
of function.

In the next section we are going to introduce a new kind of approach which
we consider much more connected to the musical facts, though it uses tipically
mathematic concepts of graph theory.

3 Background

In this section we’ll recall some graph-theoretic definitions and results which will
be used later. We’ll suppose the reader knows the elementary notions of graph
theory (cfr. for example [7], [8]), particularly the notions of vertex degree, graph
inclusion, eulerianity, hamiltonicity and spanning tree.

In this paper we’ll consider quite only eulerian connected oriented multigraph
defined on finite sets. To fix the notation, now we give some definition.

Definition 3. A finite oriented (multi) graph G = {Vg, Ag, 0,01} is a set
Vo of objects v;, i € I = {1,2,...,n} (the vertices), a set Ag of arrows a;,
1€l ={L12,....,m} and a couple of functions Oy, 01 such that 9y : Ag — Vg e
81 : AG — Vg.

Definition 4. A graph morphism f : G — G’ is a couple of functions fa :
Ag — Ag and fv : Vg — Vg which make the diagram below to commute.

Ag~ fa - Agr
A\

\/

o, 01 05, 01

VG > > VG'

fv (4)
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Definition 5. Given an oriented graph G, the opposite graph GP is the graph
obtained from G reversing the orientation of all the arrows.

3.1 Inclusion

Now we will introduce a notion of inclusion, different from the standard one.
Definition 6. A graph G is included in a graph G' if Vo C Vo and exists a
partition P(Ag:) of the arrows set of G', Ag, in trails such that the diagram

Ao A . 73(/}@)

\/

a0 ) a1 a(’)? ai

\

A\l
VG > ZV > VG' (5)

commute; where i = (ia,iy) is the usual graph inclusion.

Remark 1. If the partition is the finest one, i.e. all classes are singleton, the
definition collapse to the standard inclusion.

Remark 2. The partition may not be unique.

Proposition 1. The inclusion defined above is a partial order relation.

Proof. Reflexivity and transitivity are obvious. Using the injectivity of i and of
its inverse, Vg = Vv and Ag = Agr; so, by the commutativity of diagram (5),
we’ve proved the antisimmetry.

Remark 3. The inclusion defined above works with labelled graphs. It may be
useful enlarging this concept to the situation where Vi is ’quite’ included in
V. In fact in musical graphs is not relevant to preserve the labels because we
study objects invariant by musical tranformations (i.e. permutation of labels
preserving the metric structure defined on V).

So we will give the next definition.

Definition 7. A graph G is weakly included in a graph H iff exists a subgraph
G’ of H isomorphic to G.
G=G CH (6)
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3.2 Union
Let’s consider a couple of graphs G and H.

Definition 8. We define the union of G and H the graph G U H such that
Vaug = Vo UVy and Agug = Ag U Ag.

Remark 4. If G and H are connected eulerian graphs, it may be convenient
assuming Vg MV # 0. Doing so the result is equally connected and eulerian.

Proposition 2. The union operator defines the minimum superior bound GV H
for every couple of graphs G and H in respect to the relation of (strong) inclusion.

Proof. If a graph I containing G and H is contained in G V H, it has to be
Vi = Vgvm because also hold Vg C Vi, Vg C Vyand V; C Vavy.

By the arc axiom, should be |Ag|+ |[Ax| < |Af| < |Agva| = |Ac| + |Au].
Then I =GV H.

3.3 Graph Complexity

Definition 9. The complexity k(G) of a graph G is the number of equally ori-
ented spanning trees of G.

The following three propositions evidence the importance of graph complex-
ity in our model. Their importance will be more clear in the next section.

Proposition 3. Let H be the graph obtained from a graph G substituing an
arrow a : v; — v; with a couple of arrows ay : v; — v and az : v — vj, with
V3, V5,0 € V. Then

k(H) > k(G). (7)

Proof. Let T be a spanning tree which contains the arrow a; : v; — vg. If we
replace a with the trail ajas, the result from T with the substitution of a by a;
or by ag is yet a spanning tree; so the complexity of G can only increase.

Proposition 4. Let H be the graph obtained from a graph G of order n(G)
adding a vertex v,y1 to Vg and replacing an arrow a : v; — v; with the couple
of arrows ay : v; — Vg1 and ag : Vpp1 — v;. Then

K(H) > k(G). 8)

Proof. We can divide the spanning trees of G in two classes: X={spanning trees
containing a} and Y={spanning trees which do not contain a}. Obviously we
have k(G) = | X|+ |[Y]. If @ € Y then « V a3 is a spanning tree of H. Thus the
complexity of H is at least |Y|. Let’s consider a tree § € X. Replacing a by the
trail ajas we obtain yet spanning tree. Finally we have k(H) > |V|+|X| = k(G).



266 Goflfredo Haus and Alberto Pinto

Proposition 5. Graph complezity is a monotonic function respect of the order
relation of graph inclusion previously defined.

Proof. Let G be strongly contained in H. Then, if Vo C Vy, the corollary 3
implies that k(G) < k(H) and if Vg < Vp, the corollary 4 implies k(G) =
k(H). Now let G be included weakly in H. The invariance of complexity under
isomorphism and the previous case proves the theorem.

4 The Model

Our principal purpose was to look into a theme fragment globally, not only as a
pure sequence of notes. So that’s why we’ve structured musical information in a
different way, but preserving the more abstract content.

4.1 Musical Graphs

Now we are going to describe how to build a graph model of a TF. We consider a
structured set of TF (a database) and a TF (the query) which has to be compared
with every set-element. This is how to proceed:

1. build a representative graph for every TF
2. work with graphs instead of TF.

In this way, we can recognise a greater number of relevant musical similarities
and we can reduce the number of TF wich should be compared. Moreover, TF's
of the archive which have the same representative graph can be identified yet.

Let M be a TF of length m = |M| and consider three characterizing se-
quences of observable: pitches {hs}scr, lengths {ds}ser and accents {bs}ser,
{I = 1,....,m}. Then let (V,d) be a metric space on a finite set of element
(V). V and d depends upon the musical system we are considering.

Now, let’s consider the linear graph (; obtained by associating a vertex
labelled by hg to every element hsy € V' and an oriented arrow as : hy — hgy1 to
every couple (hg, hsi1), so that dopa = hs and d1a = hsyq.

We can then define a weight function p: Ag, — Q x Q by:

pras— (ds,bs) €QT x QT Vs=1,...,m—1 (9)

where a, : hy, — hy and p(an,) = (d1, b1).
Then we quotient the vertex set by identifying the vertex with the same label.

Definition 10. Let M be a TF, we call musical graph representing M (and we
write G(M)) the graph obtained by the process described above.

Now we are going to analize the properties of the graph G(M) representing
a TF M.
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Proposition 6. Musical graphs are eulerian, connected, oriented multigraphs.

Proof. The proof is trivial if one considers the construction described above.
In fact we have sent every interval of the original TF in an equally oriented
arrow. The melody is a sequence of intervals, so it is clear that such a sequence
represents an oriented trail in the graph which uses every edge once and once
only. The closure of the trail is imposed by the definition, because we suppose
the last interval being the last note-first note one.

Hamiltonian Graphs Serial music is an important part of contemporary music
and also in diatonic and tonal contexts.

So an important class of TFs are those which correspond to series: they
have an interesting interpretation in our model. In fact, series correspond to
hamiltonian graphs.

The next proposition characterizes the TFs which contains a series.

Proposition 7. A TF M contains a series iff its representative graph G(M) is
hamiltonian.

Proof. In fact, given a series M the resulting graph is necessarily hamiltonian,
because it contains all the intervals of the series. Viceversa an hamiltonian path
in G represents obviously a series M.

Ezample 1. Let’s consider a dodecaphonic series (cfr. [13])

é’ho N o b

Its representative graph is clearly C72, which is hamiltonian.
Remark 5. Cyclic graphs C,, are a trivial example of series.

Remark 6. A particular case is represented by equilibrate series (cfr. [11]). Let’s
recall their definition.

Definition 11. A TF'is an equilibrate series iff its representative graph is cyclic
(thus hamiltonian) and Va;,a; € Ag, a; # a;
d(aoai, (’91ai) 75 d(aoaj, 81aj) (10)

In other words equilibrate series present the greatest variety not only in
vertex set but also in the arrows.
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Equivalences One of the reasons why we needed to enlarge the concept of sim-
ilarity was the recognition of new kinds of transformations; particularly we were
interested in the permutation of melodic subfragments. These tranformations
are important not only for musicologic research purposes in contemporary music
but also for investigations in canonic-imitative music.

Now, let’s analise two concepts of equivalence of TFs that will be central in
the model.

Euler-Equivalence of TFs An equivalence concept which comes out from the
representative graph construction is the one concerning the different trails in the
graph.

Definition 12. We say that two TFs are Euler-equivalent iff they have he same
representative graph.

Let’s try to better understand what this could mean from a musical point of
view by some propositions.

Proposition 8. A graph is Eulerian iff it is decomposable in edge-disjoint cy-
cles.

Musically the proposition means that in an equivalence class there are TFs
which admits a common cycle decomposition.

Ezample 2. Now, consider the TF (cfr. [19]):

B oo 0L ..

and let’s permute the cycles with the evidenced start and stop points (B,A,B)
e (B,A,G,AB):

The two TF's have exactly the same representative graph.

Therefore when we consider a particular musical graph we are really consid-
ering all the TFs corresponding to all the different eulerian circuits of the graph
(with fixed starting point)

Musically this means that we identify TFs obtained by particular permuta-
tions of subfragments. We want to point out that these aren’t arbitrary permuta-
tions. Otherwise there would be no advantages in respect of Tenney & Polansky’s
non ordered interval metrics ([1], [2]).
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Is it possible to compute exactly the number of euler-equivalent TF by the
next result.

Proposition 9. Fvery class of euler-equivalent TFs has cardinality given by

(df —1)! (11)

n
C .

1=
where ¢ is the number of equioriented spanning trees of the same representative
graph.

Proof. The proposition follows from the Cayley theorem.

Equivalence of TFs Now we give a more general notion of equivalence, which
includes also the standard tranformations of music theory.

Definition 13. Two TFs are equivalent iff their representative graphs are iso-
morphic.

Remark 7. Equivalence implies euler-equivalence.

Remark 8. Standard melodic transformations are included into the isomorphism
definition. In fact isomorphism implies an isometry between the metric spaces of
vertices; therefore if we consider for example the standard equally tempered met-
ric space (S1) it is evident that tranformations like transposition and 1'inversion
are isometries ¢ : V — V.

The retrogradation consists in the inversion of the orientation, so we have
just to consider the opposite graph.

4.2 Subgraphs and Inclusions
Besides euler-equivalent TFs there is another interesting class of TF that can

be obtained from a given one. The eulerian subgraphs. In fact it is possible to
choice vertex and arc subsets such that the resulting graph remains eulerian.

Ezample 3. Consider the two TFs (cfr. [18])

|B> 196 ° L4 #o L4 L4 o o [ 4 P o L4 PY o o Ps o

Of course the second TF is an eulerian subgraph of the first one.



270 Goflfredo Haus and Alberto Pinto

This is a quite particular case, which points out how we can recognise TF
inclusions by a simple graph difference.

The necessary condition in this case is that the embellishments must be closed
circuits of the graph.

Thus we have the following proposition.

Proposition 10. Let M be a TF and M’ another TF obtained from M by the
addition of closed embellishment to the notes of M. Then G(M) is an (eulerian)
subgraph of G(M").

Now we will define a notion of inclusion using the ”weak inclusion” defined
before.
Consider the musical theme (cfr. [19]):

It is clear, musically speaking, that the first TF is a variation of the second
one.

Now we will try to formalize this concept by the next definition.

Definition 14. We say that a TF A is included in a TF B if the representative
graph of A is weakly included in the representative graph of B G(A) C G(B) 7
such that i : Vg(A) — Vg (B) is an isometry.

4.3 Necessary Conditions

The problem of deciding the inclusion of a TF into another one, using the ”large”
concept of inclusion, moved from the TFs to their representative graphs.

Teorically it may also be possible to use string matching tecniques, but there
are at least three facts which lead to exclude those methods.

First of all, we should compare all the TFs undisctintively, and this would
be particulary heavy from a computational point of view, expecially real-time.

Another handicap of the sequential approach is the fact that it’s rigorously
note-dipendent, i.e. it depends, in our graphic language, from vertex labelling.
The transformation of TFs should be not contempled.

At the end, the natural equivalence class of TFs should be that concerning
the isometries between the vertex set only, excluding permutations of sub-TFs.
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Large part of our work consisted in searching for graph invariants mono-
tonic respect the partial order relation of inclusion in the graph set defined in
7. Using graph invariants we could consider a TF with all its transformations
by isometries. This process really does not depend on vertex labelling and so we
can consider a TF toghether with all its transformed ones.

To fasten the inclusion test however it would be necessary to find out a set
of good necessary conditions, which can reduct the set of TFs to compare. Now
we will explore the condition so far identified.

Order and Size The first invariant we are going to consider are graph order
and graph size.

Definition 15. The order and the size of a TF M are the order n(G) and the
size m(QG) of the graph G representing M.

Of course we can observe that:
Remark 9. If G C H then
n(G) <n(H) m(G) <m(H), (12)

i.e. the number of vertex and the number of arrows in G have to be less than or
equal to their respective in H.

From a musical point of view the condition concerning the arrows is evident
(the fragment M (H) must have more intervals than M (G)). Vertex condition is
less trivial. In fact it says that the total number of distinct notes must increase
or remain stationary in an inclusion, so we could never have a situation like this:

The second fragment includes G, but the first doesn’t. These fragments aren’t
comparable. Moreover our inclusion relation induces a partial order on the mu-
sical graph set.

The Complexity Another significative invariant is the number of spanning
trees of the graph representing the TF. At the graph level, an embellishment is
obtained by the substitution of an arrow with an equioriented trail of the same
total weight, with the same beginning and end vertex.

Consider the simplest variation: the insertion of one note.
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Ezample 4. In this fragment

oo

U1 Vg U3

the first note of the alla lombarda rhythm, corresponding to vertex vs is the
embellishment of the line

g . - - -

U1 U3

So, in the correspondent graph we have:

— first fragment: the arrows a; = (v1, v2) and ag = (v2,v3)
— second fragment: the arrow by = (v1, v3)

where [b1| = |a1| + |az].

In this example, vertex vy has minimum degree (v = v~ = 1), i.e. there
are no other trails passing trough it, because we wanted to point out the non
decreasing property of graph complexity in the substitution of My with M;.

In fact the second fragment (Mz) has k(G(Mz)) spanning tree and if we
replace the arrow b; with the trail ajas such trees continue to span the graph
(My).

This fact pointed out by the example helds also with added vertex belonging
to the first graph. Let’s better formalize this fact with the following definition.

Definition 16. The complexity k(M) of a TF M is the complexity of its rep-
resentative graph g(M) (cfr. def. 9).

We would remind that
Remark 10. The complexity of a graph is equal to the number of spanning trees
of the graph
Proposition 11. Let M be a TF and M’ a variation of M obtained by the

insertion of notes. So we have k(M) < k(M').

Proof. At the representative-graph level, the process which transforms M in M’
consists of a substitution of oriented arrows by oriented trails. In this way the
proposition follows from the 3 and 4.
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The Degree Sequence Of course the inclusion of a TF M in another TF M’
implies that the number of corresponding notes can only increase.

Definition 17. The degree sequence of a TF M is the valence sequence of its
representative graph G(M).

Proposition 12. If a TF M s included into another TF M’ then the respective
valence sequences are such that

di(M) < di(M') ,Viel (13)
Proof. The proposition follows by the definition of inclusion of TFs.

4.4 The Metric on Vg

By definition, given a musical graph G, the set Vi is a metric space.

It’s really important considering the note set only as a metric space as we are
interested in invariant objects of all musical transformations. The lonely really
important facts are the distance ratios between the notes.

Certainly, the most general possible transformation in our contest is an arbi-
trary permutation of nodes; however this may cause an outgoing of the isometry
set. Then, even a learned listener should run into serious difficulties in recog-
nising such a transformation. Similarly, if wethink of changing the rhythm, the
probabilities of recognise the TF should tend to zero.

We would remind at this point the musical transformation that a TF can
undergo:

1. transposition;
2. specular inversions;
3. retrogradations.

Thus it is possible to give a necessary condition for the inclusion that will
have a great relevance in recognising those transformations:

Proposition 13. If a TF M is contained into another TF M' then the inclusion
Junction iv, )

Aa(M)> " - P(AG (M)
a0781 a(l)?ai
\ \
eMr gy, Ve (14)
G

s an isometry.

Proof. The proposition is obvious using the definition of (weak) inclusion and
the definition of musical tranformations.



274 Goflfredo Haus and Alberto Pinto

4.5 The Power Graph
Let’s consider the TFs (cfr. [19])

Be = o e oL . e

”gC L4 o ° o\ .\ ° o [ 4

V1 U2 U3

They differ by a passing note (closure of the third). At the graph level we
can observe that the arrow a; : v1 — wv3, wich is present in the first graph, is
replaced by two arrows a; : v1 — w9 and as : v9 — w3 in the second one, so a
trail of lenght 2 replaced an arrow.

Let’s remember the transitive closure operation.

Definition 18. Let G be a graph. We call transitive closure of G the graph G
such that Vi, = Vg and A, contains all and only the arrows such that:

a; = blbj A O1b; = aobj R bi,bj € Ag (15)

Remark 11. The transitive closure is an internal unary operation on the set of
eulerian graphs; in fact we can observe that:

Proposition 14. If G is an eulerian graph of size m, then G is also eulerian
of size 2m.

Proof. Given an eulerian cycle in G, the arrows of G are the arrows of G plus a
number of arrows equal to the number of couple of adjacent arrows of G. Thus
is obvious that |G | = 2m. By construction, the graph resulting from a closure
operation on an eulerian graph is obviously eulerian.

From a musical point of view the operation consists of an union of two TFs:
M(G) and the TF obtained from M (G) taking all the notes of M(G) but pro-
ceeding by jumps.

Iterating the process we can obtain the k-th powers of a graph.

Definition 19. We call k-th power M* of a TF M(G) the TF whose represen-
tative graph is obtained from the graph G(M) iterating (k-1) times the transitive
closure operation.

The interesting result which comes out from those definitions is the next
proposition.
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Proposition 15. Let M and M’ be two TFs. M' contains a variation of M by
adding single notes if and only if exists an isometry i : Vgry — Viury such
that the equation

G\H\(H\G)*=0 (16)

is satisfied.

Proof. If M’ contains a variation of M which is obtained by adding no more
than one note between two consecutive notes of M so we will therefore have a
graph inclusion i : G(M) < H(M’) such that the set Ay will be partitionable
in classes formen by trails 77 such that:

n=1ta(a)=h, h€ Ag (17)

or

n=ia(a) = hihy , with O1hy = doha hi € (A \ Ayq)) (18)

In the first case we have n € Ay NA;) though in the second case n € A\ i(a))2-
So the 16 is satisfied.

Vice versa, if exists an isometry i : Vig(ar) = Vi (ary such that it satisfies the
16, we'll have G\ H C (H \ G)?; hence Va € i(Ag) will be:

a€Ag N AZ(G) V a=hihy, with O1hy = Oyhs h; € (AH \Ai(G)) (19)
Hence we can partition Ay following the definition.

Finally we’ve obtained an operative sufficient and necessary condition for the
inclusion which can be usefully implemented into an algorithm for the recognition
of the inclusions.

4.6 Graph Metric
Now we can define a metric in the set of musical graphs.

Definition 20. Given two musical graphs G ed H we define the distance between
G and H as the number:

_ |Ac e Axl
‘A(;UAH‘

where © is the symmetric difference operator.

d(G, H) (20)

Remark 12. Naturally the function defined above satisfies the metric axioms
(inherited by the insiemistic metric), so the set of musical graphs together with
the distance function d is a metric space.

From a musical point of view, the (normalized) metric defined above is not
satisfactory as it assignes very high distances to the couples of TF which are
similar (for example a couple of fragments which differs only for passing tones).
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Ezample 5. Let’s consider the two TF (cfr. [20], BWV 565)

The second TF is clearly obtained inserting the tone A between each couple
of consecutive tones of the first TF. Yet the distance calculated by the 20 is:

Agc A 1
_lAeedul _5+13 _ 9 (21)

H) = =
d(G’ ) |Agl_|AH| 20 10

Absolutely too high!

The problem is that such a distance do not consider the lenght-two graph
trails at all. Musically, this means to ignore, for example, passing tones, neighbor
tones, etc..

Indeed we need a more general notion of similarity which considers and, if
possible, gives a different weight to these musical facts.

4.7 Similarity Function

Now let’s give the notion of similarity function between graphs which will be
useful to estimate the similarity between two TFs.

Definition 21. Let M and M', M < M’, be two TFs with representative graphs
G = G(M) and H = H(M). Then, given r € N, we call r similarity function
ordine r between M and M’ the function:

|G- |G\ HI\ HY

o(M,M")=0o(G,H) = mgxz o <l (22)

where H® = (), o; are positive coefficients which depend upon the weight assigned
to the different trail lenghts and ¢ varies among all the possible isometries from
Vo to V.

Remark 13. The function 1/o isn’t a metric on the set of TFs, because
o(M,M") #oc(M', M) .
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Ezample 6. Let’s consider the TFs A e B below (cfr. [20]):

The first TF (A) is clearly contained in the second (B) and the function
which realizes the max is the identity function. Let’s calculate the similarity
function with » = 1 and o; = s = 1. We have:

1 6
o(A.B)=_+. =1 (23)

Ezample 7. Now, consider the two fragments (cfr. [18])

Bi = et o o e o e e

The second one, as we’ve already pointed out in 4.2, is even an eulerian
subgraph of the first one because its intervals are present also in the first one.

Let’s calculate the similarity function with » =1 and a1 = ;, as = 12. We
have:

1 1
o(AB) =+, =1 (24)

5 Algorithmic Implementation

We tested the algorhitms deriving from the theory by a software implementation
of the model. The software prototype has essentially the function of automatize
the process of comparison of TF's.

As we've described in analysing the model, there are various necessary con-
ditions for the inclusion of TFs.

The inclusion-monotone invariants constitute an integrant part of the soft-
ware and are necessary in order to delete any comparison which could surely
fail.
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Consequently, the algorithm divides into three parts:

1. construction of the representative graphs of TF's;
. test of necessary conditions for the inclusion;
3. calculation of the similarity function.

[\

Graphs have been implemented by a java class Grafo endowed with methods
and data structures to permit all operations.

6 Summary and Conclusion

The model presented here enlarge the similarity class of tematic fragments in
respect of the other models known in literature.

Particularly, it is clear that the more a TF presents variety in melodic and
interval construction the smaller becomes its euler-equivalence class. Viceversa,
TFs with repetitions tends to be more similar, increasing the cardinality of their
eulerian class. So the model is coherent with the common musical intuition.

7 Future Work

The graphical approach can be developed towards numerous directions. First of
all we have to increase the number and the power of necessary conditions which
are musically significant. At the moment, we are studing the relevance of par-
ticular polynomials defined by graphs.

Afterwards the rhythm and accentual dimension, defined by arrows weights,
have to be integrated into the model. The resistive metrics seem to give good
results for the rhythm.

Another developement line is the optimization of the algorhitms and their
software implementation.
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Abstract. For content-based music retrieval, since not only the correctness of
retrieval results but also the performance of retrievals is important, there are
great needs for efficient content-based music retrieval systems that can quickly
retrieve the relevant music on demand from large music database with low stor-
age overhead. In this paper, we describe the design and implementation of a
content-based music retrieval system in which the representative melody index
is systemically constructed and used to support quick and appropriate retrievals
to users’ melody queries. By using the proposed system for digital music librar-
ies, it could save up to 65% of index space than that for the whole motifs index
while the appropriateness of retrieval results is maintained.

1 Introduction

There have been strong needs for investigation and development of content-based
multimedia information retrieval systems in order to support the effective and effi-
cient retrieval for multimedia information. While, for image or video information,
several content-based retrieval systems have been developed, for music information,
most of current working music retrieval systems are based on only metadata of music,
such as title, composer, singer, and words of song([1], [2], [3], [4]). However, these
traditional systems based on metadata have the major restriction that users should
recall and specify metadata of music they want as users’ queries. This restriction is
unnatural due to the general fact that people prefer to remember a part of music itself
rather than its metadata. Therefore, content-based music retrieval system in which
some melodies are used as queries in order to retrieve music information is essentially
required.

As content-based music retrieval systems, relatively few systems have been devel-
oped([5], [6], [7], [8]). In these systems, users specify query melodies by humming,
by playing, or by drawing a part of music remembered as the representative melodies.
Here, by the representative melodies of a music we mean that they are semantic dele-
gation of music’s melodies such as the first melody, the climax melody, and the re-
peated theme melodies of the music and people can remember these melodies for the
music so that users are likely to use these melodies as query melodies([9]). Then, the

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 280-294, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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system retrieves the music information according to the similarity between user’s
query melody and the melodies of the underlying music database.

However, these previous content-based music retrieval systems do not have the ef-
fective indexing mechanism that is helpful to improve the appropriateness and per-
formance of retrievals. Hence, in traditional content-based music retrieval systems,
users may face with long response time, since those systems need time-consuming
syntactic processing for retrievals in which an approximate matching between query
melody and all melodies of underlying music database should be performed.

Some of the previous systems([8], [10]) have the first melody index in which only
the beginning part of each music file is included. In general, however, since people
are likely to remember music by its representative melodies not only by just its first
melody users can input other representative melodies not the first melody as query
melodies. Then, they could not get the music information they want. In other words,
these systems with the first melody index cannot support user queries of all possible
representative melodies including climax melody and repeated theme melodies of
music.

To remedy the above problem, some researches([11], [12], [13], [14]) have con-
centrated on extracting repeated theme melodies from a music file. In [11] and [12],
since authors consider the exactly repeated patterns in a music file as theme melody, a
melody exactly repeated two or more times extracted as a theme melody from the
music. In general, however, according to the property of theme melody in musicology,
theme reinstatement, a theme melody should be repeated more than once with some
variances within a music file([15]). In other words, the theme melody index in which
only the exactly repeated theme melodies extracted by the mechanism of [11] or [12]
is not enough to support users’ queries of the representative melodies.

However, in our previous work([14]), we proposed a theme melody extraction
mechanism in which an extended graphical clustering algorithm is used for grouping
the approximately repeated melodies into a cluster with considering musical composi-
tion forms and a melody is extracted from each cluster as an approximately repeated
theme melody. In addition to the extraction of the approximately repeated theme
melodies from a music file, the first melody and the climax melody of the music are
augmented into the final representative melody set. Thus, the representative melody
index can well support users’ queries in which these kinds of melodies are used.

In this paper, we discuss the design and implementation of a content-based music
retrieval system in which the representative melody index is used to support effec-
tively and efficiently users’ queries in which some part of the first melody and/or the
climax melody and/or the approximately repeated theme melodies of music files they
want are used. We also discuss the retrieval and the relevance feedback procedures
using the representative melody index for several types of users’ queries.

The rest of this paper is organized as follows. Section 2 discusses the indispensable
features for content-based music retrieval system and the overall architecture of the
proposed system to support these indispensable features. In section 3, we discuss the
systematic construction of the representative melody index when a music file is regis-
tered into music database. In section 4, we discuss the procedures of content-based
music retrieval using the representative melody index. We also discuss the perform-
ance of the system. Finally, this paper is concluded with future works in section 5.
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2 Architecture of Content-Based Music Retrieval System

In this section, we discuss the ideal architecture for content-based music retrieval
systems. For it, first we summarize the essential requirements of content-based music
retrieval systems. Then, according to the requirements we introduce the overall archi-
tecture of the content-based music retrieval system developed in this work.

2.1 Requirements for Content-Based Music Retrieval Systems

In content-based music retrieval systems, as user’s query, since humming, playing or
drawing a part of music can be used, content-based music retrieval systems should
have a user interface that is able to support these types of querying. The interface
transforms user’s query into an intermediate representation in order to compute the
similarity between query melody and melodies in music database. In fact, however, in
order to enhance the response times of retrievals from huge music database, compar-
ing the intermediate representation of query melody to all of melodies in the huge
music database must be away from. For this purpose, content-based music retrieval
systems should have the index that has the representative melodies of the music data-
base in order to compare user’s query first instead of the huge music database. For the
representative melody index, it is needless to say that during the hit ratio of the index
is maintained appropriately, the smaller index is, the better response time users get.
Here, the hit ratio means the rate of the total number of users’ queries to the number
of the matched queries successfully in the representative melody index. To keep the
index small, only the appropriate representative melodies that are likely to be used as
users’ query melodies should be extracted from music database.

Since user’s query is not so accurate, the system should compute the similarity be-
tween the query melody and the representative melodies of music database. Also, the
ranks of the retrieval results are based on the similarity values to the query melody.
Furthermore, since visual and/or auditory user interfaces are helpful for users to vali-
date whether the retrieval results are appropriate to users’ queries, people may prefer
a content-based music retrieval system that has visual and auditory user interfaces.

When users do not satisfy the retrieval results, users submit either a totally new
query or a modified query from the previous query or previous results. In information
retrieval community, this kind of work for modifying the original query to enhance
gradually the appropriateness of retrieval results is referred to as user relevance feed-
back. Hence, to allow users to get more correct results from the previous query, con-
tent-based music retrieval systems should have a user relevance feedback.

2.2 Overall Architecture to Satisfy the Requirements

The overall architecture of the content-based music retrieval system developed in this
work is shown in Fig 1. It consists of User interface(Registration interface and Query
& Result interface), RM extractor & indexer, M-tree engine, Music database, MIDI
generator, Query processor, and Ranker.
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Fig. 1. Architecture of the Proposed Content-based Music Retrieval System

User interface. There are two types of user interfaces; Registration interface and
Query & Result interface. Query & Result Interface consists of three modules for
querying(query by humming, query by drawing, and query by playing) and two mod-
ules for retrieval results(one is for viewing the music score and the other is for listen-
ing the music). Up to now, since the drawing interface is well tested and is good for
viewing the content of users’ queries, we will use this interface hereafter. To improve
the satisfaction degree for the retrieval results, users can use the previous query or the
previous retrieval results to make a next promotional query. For this purpose, user
interface should include also the user relevance feedback module.

RM extractor & indexer. From the new music file submitted via Registration inter-
face, the representative melodies are extracted and included into the representative
melody index by RM extractor & indexer. This work is accomplished by the unit of
motif since it is the minimum meaningful unit in music semantics([15]). This module
has two primary sub-modules; Similarity computation and RM clustering. Similarity
computation module computes the similarity values of all pairs of motifs of the music
file and finally constructs a similarity matrix of the music file. And, RM clustering
module classifies motifs of a music file into one or more groups in each of which only
the similar motifs to each other are included. The more details of extracting and in-
dexing representative melodies are discussed in section 3.

M-tree engine. The representative melody index is implemented by M-tree, a multi-
dimensional indexing scheme. To place the extracted representative melodies into the
metric space of M-tree, we choose the average length variation and the average pitch
variation of representative melody as the key features. Also, the extracted representa-
tive melodies are stored with their signatures. The signatures of representative melo-
dies are used to filter out and to rank retrieval results.

Music database. The music files are stored in music database with metadata(time
signature, key signature, composer, singer etc.), file location, and other housekeeping
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information. The metadata is for text-based music retrieval and the file location is
used to return the corresponding music file as retrieval result.

MIDI generator. In this work, we assume that music file is in MID(musical instru-
ment digital interface) format since it is a well-known standard for computer music.
MIDI generator transforms a query melody of humming, drawing, or playing into
MIDI format as the intermediate format.

Query processor. Query processor first makes the retrieval features and the signature
of user query melody. It retrieves the relevant melodies from the representative mel-
ody index of M-tree by using k-nearest neighbor search. The more details concerned
on retrieval and user relevance feedback are discussed in section 4.

Ranker. Ranker gets rid of false-dropped results from the retrieval results and de-
cides ranks of the retrieval results according to the distances between the query’s
signature and the signatures of retrieval results. Since a query melody is of different
length from representative melodies in the representative melody index, we use time-
warping distance function([19]) to compute the distance between them.

A prototype of the content-based music retrieval system using representative mel-
ody index is developed by using Microsoft’s Visual C++ 6.0 and is working as a
desktop application on Microsoft’s Windows systems. The first screen of the devel-
oped system is shown in Fig. 2. The main window is for listing up the music files
already registered and the lower window is for system logging.

(=1 CBMR ver 1.0 SE]
Begister ‘iew M-Tree GCuery Help .

Data Grid Bar b3
Category | Title | Songiriter | Composer | &rranger ~|
korean classical m.. S427] Pl = Pl = Unkniown
children's song S 2=z 2|=0g Unknawn
children's song 22| T 0lH Unknown
children's song ZeHIEE =28l =8l Unknown
children's song ZUIEHR = HIE nknawn
children's song === Unknown 225 nknaown
children's song SEOt=E0t Hel2EAL Al IInknown
kargan classical m..  SHEMHSHO HilEa HilEa nkngwn
korean classical m.. SE2(EE s=llg s=llg Unknown
children's song St E2t =l Tz IInknown
children's song ER4e=z THE 2|== nknaown
korean classical m.. il Unknown Hillze nknown
children's song LL0tE A= = Unknown [,
Log Window w
Open M-Tree index.. success

Connect CBMR Server,,, success

LR

Fig. 2. The First Screen of the Content-based Music Retrieval System
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3 Systematic Construction of Representative Melody Index

3.1 Extraction of Representative Melodies

The summarized procedure for the extraction of the representative melodies(RMs)
from a music file is shown in Fig. 3.

When a music file is submitted, the features such as time-signature, pitch and
length of notes are extracted from the submitted music file. By using these features,
we decompose a music file into the set of motifs, since a motif is the semantic unit of
music composition. Then we compute the similarity values between all pairs of the
motifs by using the similarity computation algorithm([16]). Then, the similarity ma-
trix can be constructed. The motifs of a music file are clustered based on the similar-
ity values by using the proposed RM clustering algorithm that considers the musical
composition forms. The detail of the clustering algorithm is in [14].

From each clusters, we extract an approximately repeated theme melody as a rep-
resentative melody based on the position or role of the motif within the music. If a
cluster includes the first motif or the climax motif, we extract that motif as the repre-
sentative melody from the corresponding cluster. Otherwise, we extract a RM from
each cluster to allow the extracted melody to be the center position of the cluster in
metric space of M-tree([17]). After extraction of RM from each cluster, if the first
motif or the climax motif of a music file does not exist in the extracted melody set,
we add them to the final set of representative melodies for the music file.

Input a music file

v

‘ Extract feature information from the music file ‘

v

‘ Decompose the music into set of motifs ‘

Compute the similarity values Extract the first motif and
between all pairs of motives climax motif as RMs

Construct the similarity matrix

Cluster motifs using the RM
clustering algorithm

Extract approximately repeated
theme melodies as RMs

v Y

Register the music file with the extracted RMs

Fig. 3. Procedure for Extracting Representative Melodies from Music File

As an example of extracting the representative melodies, we consider a Korean chil-
dren song, ‘Spring of Hometown’ of Fig. 4. The song consists of 8 motifs and has a



286 Jae-Yong Won et al.

pattern as its musical composition form, A-B-C-D-E-B'-C-D. From the musical com-
position form, we can expect that 8 motifs should be clustered into three similar
groups, {B, B'}, {C, C}, and {D, D}.
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Fig. 4. The Music Score of a Korean Children Song ‘Spring of Hometown’

When we input the MIDI of ‘Spring of Hometown’ in Fig. 4 for registration by
choosing the ‘Register’ menu in Fig. 2, we can see the screen of Fig. 5. We can see
the information for representative melodies extracted from the music at the lower
window.

Irport i
Weta Data
Title ngeE B0k Leeeling Open
Directary CHhELPYmidit D EF2 & mid
Insert to DB
Category children’s sang =
: e Wiew Score/Fla
Songwriter 0] 22 Beat: 41 Score/Play
Composer  ZLHI} Tempo 100 Bepresentative
Arranger Unknown| IMajor: C Major
: Cloge
Histary
Length Information: Pitch Information:
4300 4800 2400 2400 4800 ~ G617 B7 B4 G5 A7 ~
4800 4800 9600 B9 B9 E7
4800 4800 4800 2400 2400 6GF 72 78 ™ T2
14400 4800 Won
4300 4800 4500 4800 v T M T =
Theme Mot Info, T T
Motif No [ L_value | P_value | Radius | Sigl [Sig2 [ Sig3 [ Sigd [ Sigs [ Sigh [ Sig?7 [ Sigh |
[ 1.71 3,42 117 1.00 400 800 500 600 GOO G600 400
3 0,94 244 0,00 600 800 600 600 400 500 100 1,00
i 1.7 242 0,00 600 800 800 400 100 100 100 500
1 1,34 1.36 0.00 380 350 1,00 380 5B0  5E0 350 350

Fig. 5. Registration Window for ‘Spring of Hometown’

To see the more details of RM clustering, when users click the ‘Representative’ but-
ton of the rightmost frame we can see the screen of Fig. 6. In this screen, we can see
the similarity matrix, the clustering results with threshold value by the RM algorithm
of [14], and the climax motif of the music file. From the similarity matrix, we can
easily recognize that ‘Spring of Hometown’ has the musical composition form of A-



A Content-Based Music Retrieval System 287

B-C-D-E-B'-C-D since the similarity values between 3™ and 7™ motifs, 4™ and 8"
motifs are 100 and the similarity value between 2™ and 6™ is almost near to 100,
exactly 99. That means we have final three clusters {2, 6}, {3, 7}, {4, 8}. From these
clusters, as shown in Fig. 5, we extract the motifs 6, 3, 8 as the representative melo-
dies, respectively. And 1% motif is augmented into the final set as the first melody.
Note that 3" motif is also the climax melody of the music file.

R4 Clustering .

Similarity Matriz

1 Mot | 2 Motif | 3Motif | 4 Matif | 5Motif | B Matif | 7 Motif | 8 Motit
T hatif | 100 a1 a0 57 Rkl a0 Eil 57

2 Matif | &1 100 78 i3] 69 99 7 66
Aot |80 T 100 a2 b4 kil 100 92

4 Motit |57 21 92 100 57 i3 92 100

S Motit |79 =] B4 a7 100 T B4 57

B Mofit | 80 b2 kil i3} 0 100 KL 66

T Motif |80 i 100 92 64 T3 100 92

B Mot |57 3] 32 100 a7 66 2 100

< >
Partition Befare Partition after Threshald
2 E -~ 2z [ -~ 81
3 7 1 3 7 1
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Fig. 6. RM Clustering Result for ‘Spring of Hometown’

3.2 Construction of Representative Melody Index

As discussed in section 2.2, to place melodies into the metric space of M-tree, we
compute the average length variation and the average pitch variation of each melody
and the radius of each cluster. If we assume that a representative melody of n/m time-
s signature has k continuous notes, [({;, p)), (L2, p2), ..., (I, p)], where [; and p; are the
length and pitch of i-th musical note in the melody, respectively. The average length
variation / and the average pitch variation » are computed by Equation (1) and (2),

respectively. In Equation (1), the first term denotes the average length difference of &
musical notes in the representative melody to the dominator m of the times of the
music and the second term denotes the average value of k-1 length differences be-
tween continuous k musical notes. Similarly, in Equation (2), the first term denotes
the average value of pitch differences between the first musical notes and the follow-
ing k-1 ones and the second term is for the average value of k-1 pitch differences
between k continuous musical notes. And the distance d(v, u) between two theme
melodies u(/, p.) and v(l, p,) is computed by the Euclidean distance in 2-
dimensional space. The radius of a cluster stands for the maximum distance between

the extracted representative melody of a cluster and other melodies in the cluster in 2-
dimenstional metric space of M-tree.
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At the lower window of Fig. 5, we can see the average length variations and the
average pitch variations of the representative melodies and the radiuses of their clus-
ters, respectively. Also, if we click ‘M-tree’ menu of the main screen of the devel-
oped system shown in Fig. 2, we can see the logical view of the representative
melody index that is picture as a 2-dimensional graph as shown in Fig. 7.

However, if we use only the average length variation and the average pitch varia-
tion of a melody to place it in 2-dimensional metric space of the representative mel-
ody index, there might be two melodies that have same / and p values even if they

are mainly different in melody patterns to each other. To distinguish these melodies
correctly and finally to return only the appropriate retrieval results for users queries,
we use the melody signatures each of which represents the variation pattern of a mel-
ody in more details according to the elapsed time. Hence, a signature of a melody is
denoted as a time-series data of <sy, $5, $3, S4,...., s¢>. In this work, we convert a mel-
ody of one motif length into a time-series data of 8 sequences. That is, a representa-
tive motif is translated into a time-series data of <sy, 55, 53, 4, S5, S, 87, S according
to the conversion scheme proposed in our previous work([18]).

Fig. 7. Logical View of 2-Dimensional Metric Space of the Representative Melody Index

At the lower window of Fig. 5, we can see also the signatures of the extracted repre-
sentative melodies, respectively, each of which is of 8 sequences. As discussed in
section 2.2, the signatures of the melodies in the representative melody index is used
to get rid of the false drop from retrieval result in addition to ranking the retrieval
results. More detailed description of using signatures for filtering out and ranking is
in section 4.1.
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4 Content-Based Music Retrieval from Melody Query

4.1 Procedure of Content-Based Music Retrieval

The summarized procedure for the content-based music retrieval using the representa-
tive melody index is in Fig. 8. When a user’s melody query with the expected number
of results r is submitted to the query interface, the system extracts the feature infor-
mation form the query and composes the average length variation, the average pitch
variation, and the signature of the query melody in similar way for registering new
music file. With these features of the query, we do k-nearest neighbor searching from
M-tree of the representative melody index. In this work, we use 2r as k value in .-
nearest neighbor searching in order to enrich the candidates for more appropriate
retrieval results.

To filter out inappropriate melodies from 2r candidates and to rank the retrieval re-
sults, we compute the similarities between the query’s signature and those of 2r can-
didates by time-warping distance function. As well known, time-warping is able to
compute the distance between two melodies of different lengths. Hence, we can re-
trieve the appropriate melodies from the representative melody index even thought
users submit query melodies that are not of one motif length. According to the simi-
larity values, we choose top » melodies from 2r candidates and decide the ranks of the
final retrieval results.

Input a query melody

v

Convert the query melody into MIDI

Y

Compose retrieval features and signature of the query

K-nearest neighbor searching | | Range searching |
from RM index from RM index

. . . User relevance
Rank the retrieval results with their signatures
feedback

' 4

Decide the relevance of retrieval results from music database

\

Final retrieval reults

Fig. 8. Procedure of Content-based Music Retrieval Using Representative Melody Index

Users view the final retrieval results based on their ranks and check the relevance for
each music file in the retrieval results via viewing its music score with a visual inter-
face and/or listening the music with an auditory interface. If users do not satisfy the
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retrieval results, users do over again the relevance feedback from the previous query
or the previous results until they get music files they want. In the relevance feedback
phase, we do range searching within in the representative melody index. The retrieval
range of the relevance feedback is adjusted according to the degree of user’s satisfac-
tion to the previous retrieval results.

4.2 Content-Based Music Retrieval Using the Representative Melody Index
For content-based music retrievals in the developed system, we choose ‘Content-

based Retrieval’, a submenu of ‘Query’ of Fig. 2. Then, we can see the content-based
query interface as shown in Fig. 9.
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5 7 —— 1 —H ¥ |
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Fig. 9. Query and Result of Content-based Music Retrieval with a Long Query Melody

In this interface, users can draw the music scores of queries with the selection of
expected number of results at ‘Result Num’. ‘Play’ and ‘Stop’ buttons are to start and
to stop listening the query melody, respectively. After drawing a query melody, by
click ‘Query’ button users can get the retrieval results as shown at the lower window
of Fig. 9. The retrieval results in the lower window of Fig. 9 come from the represen-
tative melody index. However, when we select a row in the results, we can see the
full music score that is stored in the underlying music database as shown in Fig. 10.
By clicking ‘Play all’ or ‘Play selection’ buttons, users can listen a selected part or
full of music shown in music score window, respectively. After viewing and listening
the retrieval results, users can advance the relevance feedback phase for a selected
result at the lower window of Fig. 9 by clicking ‘Feedback’ button.
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Fig. 10. Viewing and Listening Interface for Retrieval Results

To validate the appropriateness of the retrieval results from the representative melody
index, we list up the retrieval results from the query melody of Fig. 9 at Table 1.
From Table 1, we can easily recognize that the first result melody has exactly same
music pattern to the prefix of the query melody given in Fig. 9, and also other
retrieval results have also similar music pattern to the query melody.

Table 1. Retrieval Results for Long Query Melody of Fig. 9
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When we submit a query of short length as shown in Fig. 11, we get three relevant
melodies from the representative melody index. Also we can summarize the retrieval
result as shown in Table 2. In similar way, we can validate the appropriateness of the
retrieval results of the content-based music retrieval system using the representative
melody index. From these validations, we know that the content-based music retrieval
system developed in this work can return the appropriate results against query melo-
dies even though they do not have same length to the melodies of the representative
melody index, i.e., the lengths of queries are not one motif.
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Fig. 11. Query and Result of Content-based Music Retrieval with a Short Query Melody

Table 2. Retrieval Results for Short Query Mellody of Fig. 11
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4.3 Performance Evaluation

We did experiments with a music database of 265 Korean children songs. From the
experimental database, we have representative melodies at total 660, whereas the total
number of motifs in the database is 1,910. After construction of the representative
melody index with 660 motifs for the experimental database, we do querying with the
several types of query melodies, the first motif, the climax motif, and approximately
repeated theme melody, respectively.

As the results, we can summarize that the supportable query types according to the
index types. If we construct the representative melody index with only the first motifs
of the underlying music database, we cannot retrieve effectively the relevant music by
using other types of melodies such as the climax melodies and the approximately
repeated theme melodies. If we use only the theme melody index, we cannot get the
appropriate results against queries with the first melody and the climax melody.
However, in the both cases of by using all representative melodies or by using whole
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melodies of the database, three kinds of queries can be supported effectively. How-
ever, we can achieve this effectiveness in the case of by using all representative
melodies with smaller storage(about 65%) than in the case of whole melodies. Of
course, if we use the whole melody index instead of the representative melody index,
the system can support more affluence query types in which no representative melo-
dies are used. In general, however, since users remember a music file by recalling its
representative melodies, users hardly submit queries with no representative melodies.

Table 3. Supportable query types

Query melody First Climax Repeated
Index melody melody melody theme melody
Only the first melodies Supportable | Not supportable | Not supportable
Theme melodies Not supportable | Not supportable [ Supportable
Representative melodies Supportable Supportable Supportable
Whole melodies Supportable Supportable Supportable

5 Conclusions

In this paper, we discuss the design and implementation of a content-based music
retrieval system in which the representative melody index is managed and used to
improve the appropriateness and the performance of retrieval from users’ melody
queries. To design the prototype system, we first summarize the essential require-
ments for content-based music retrieval systems. Then, we introduce the overall ar-
chitecture of the content-based music retrieval system developed in this work. We
also discuss the construction of the representative melody index from the extracted
melodies and the content-based retrieval procedure from users’ melody queries. Ac-
cording to the experimental results, the system can save the index space up to 65%
than the case of using the whole melody index while almost types of users queries can
be supported.

In the content-based music retrieval system developed in this work, since the di-
mension of the metric space for the representative melody index is just 2, several
melodies that have totally different music pattern may be placed within close distance.
Even though we use the signatures of melodies to distinguish these melodies, we have
slightly inappropriate results from melody queries. As the future work, therefore, we
will design and implement a mapping function of music fragments into high-
dimensional metric space for the representative melody index. After then, by using
the system, we will develop a web-based e-commerce system for digitized music.
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Abstract. The paper concerns the use of multiple viewpoint repre-
sentation schemes for prediction with statistical models of monophonic
music. We present an experimental comparison of the performance of
two techniques for combining predictions within the multiple viewpoint
framework. The results demonstrate that a new technique based on a
weighted geometric mean outperforms existing techniques. This finding
is discussed in terms of previous research in machine learning.

1 Introduction

Statistical models of symbolically represented music have been used in a number
of theoretical and practical applications in the computer modelling and retrieval
of music. Examples of such applications include computer-assisted composition
[1, 2, 3], machine improvisation with human performers [4, 5], music information
retrieval [6], stylistic analysis of music [7, 8, 9] and cognitive modelling of music
perception [10, 11]. A significant challenge faced in much of this research arises
from the need to simultaneously represent and process many different features or
attributes of the musical surface. One approach to this problem is to represent
music within a framework that allows a musical object to be observed from mul-
tiple viewpoints [12, 13]. Multiple viewpoint modelling strategies take advantage
of such a representational framework by deriving individual expert models for
any given representational viewpoint and then combining the results obtained
from each model. Here we consider multiple viewpoint systems from the perspec-
tive of statistical modelling and prediction of monophonic music. In particular,
we are concerned with the evaluation of different methods for combining the
predictions of different models in a multiple viewpoint system. To this end, we
compare the performance of a previously reported combination technique based
on a weighted arithmetic mean [14] with a new technique based on a weighted
geometric mean.

Multiple viewpoint systems are a specific instance of a more general class of
strategies in machine learning collectively known as ensemble learning methods.
As noted in [15], ensemble methods can improve the performance of machine
learning algorithms for three fundamental reasons. The first is statistical: with
small amounts of training data it is often hard to obtain reliable performance

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 295-312, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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measures for a single model. By combining a number of well performing models,
we can reduce the risk of inadvertently selecting models whose performance does
not generalise well to new examples. The second reason is computational: for
learning algorithms which employ local search, combining models which search
locally from different starting points in the hypothesis space can yield better
performance than any of the individual models. The final reason is representa-
tional: a combination of learning models may allow the system to reach parts of
the hypothesis space that the individual models would be unable, or extremely
unlikely, to reach. The development of multiple viewpoint systems was moti-
vated largely by representational concerns arising specifically in the context of
computer modelling of music [13]. Although ensemble methods have typically
been applied in classification problems, as opposed to the prediction problems
studied here, we shall draw on that body of work as required.

The paper is structured as follows. In §2, we review the theory of multiple
viewpoints as a representational formalism, describe how we may develop statis-
tical models within the multiple viewpoint framework and present the entropy
based performance metrics that we shall use to assess the performance of our
models. In §3, we introduce the techniques for combining viewpoint predictions
and the experimental procedure that we use to evaluate them is described in §4.
The results of our experiments are presented and discussed in §5. Finally, in §6,
we conclude by suggesting some directions for future research.

2 Background

2.1 Representing Music with Multiple Viewpoints

In this section, we review the representation language of the multiple viewpoint
framework as developed in [13, 14]. The specific motivation in the development of
the framework was to extend the application of statistical modelling techniques
to domains, such as music, where events have an internal structure and are
richly representable in languages other than the basic event language. Here we
consider the framework only insofar as it applies to monophonic music. See [16]
for extensions to accommodate the representation of homophonic and polyphonic
music.

The framework takes as its musical surface [17] sequences of musical events
which roughly correspond to individual notes as notated in a score. Each event
consists of a finite set of descriptive variables or basic attributes each of which
may assume a value drawn from some finite domain or alphabet. Each attribute
describes an abstract property of events and is associated with a type, 7, which
specifies the properties of that attribute (see Table 1). Each type is associated
with a syntactic domain, [7], denoting the set of all syntactically valid elements
of that type. Each type is also supplied with an informal semantics by means of
an associated semantic domain, [7], which denotes the set of possible meanings
for elements of type 7 and a function, [.]r : [r] — [r], which returns the
semantic interpretation of any element of type 7. The Cartesian product of the
domains of n basic types 7, ..., 7, is referred to as the event space, &:
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Table 1. Sets and functions associated with typed attributes

Symbol Interpretation Example
T A typed attribute cpitch
[7] Syntactic domain of 7 {60,...,72}
(7) Type set of 7 {cpitch}
7] Semantic domain of {C4,Ct4,...,B4,Cs5}
[.1- : [r] — [r] Semantic interpretation of [7] [60]cpiten = Ca
U, &8 — [1] see text see text
E=1Im] x [m] x ... X [m)]
An event e € £ is an instantiation of the attributes 71,...,7, and consists of an

n-tuple in the event space. The event space &, therefore, denotes the set of all
representable events and its cardinality, |£|, will be infinite if one or more of the
attribute domains [71],...,[r,] is infinite. We shall use the notation e! € £* to
denote a sequence of events e;, ..., e; where j > i € ZT and £* denotes the set
of all sequences composed of members of ¢ including the empty sequence €.

A wviewpoint modelling a type 7 is a partial function, ¥, : & — [7],
which maps sequences of events onto elements of type 7.! Each viewpoint is
associated with a type set () C {m,...,7}, stating which basic types the
viewpoint is derived from and is, therefore, capable of predicting [14]. A collection
of viewpoints forms a multiple viewpoint system. We now describe the nature of
several distinct classes of viewpoint which may be defined.

Basic Viewpoints For basic types, those associated with basic attribute domains,
¥, is simply a projection function [14] and (7) is a singleton set containing
just the basic type itself. An example of a basic type is one which represents
the chromatic pitch of an event in terms of MIDI note numbers (cpitch; see
Table 1).

Derived Viewpoints A type that does not feature in the event space but which
is derived from one or more basic types is called a derived type. The function ¥,
acts as a selector function for events, returning the appropriate attribute value
when supplied with an event sequence [14]. Since the function is partial the
result may be undefined (denoted by L) for a given event sequence. Many of the
derived types implemented in [14] are inspired by the construction of quotient
GISs in [18]. The motivation for constructing such types is to capture and model
the rich variety of relational and descriptive terms in a musical language [14].
A viewpoint modelling a derived type is called a derived viewpoint and the

! While viewpoints were defined in [13] to additionally comprise a statistical model
of sequences in [r]*, here we consider viewpoints to be a purely representational
formalism and maintain a clear distinction between our representation language and
our modelling strategies.
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types from which it is derived, and which it is capable of predicting, are given
by the type set for that viewpoint. An example of a derived viewpoint is one
which represents melodic intervals in the chromatic pitch domain. Given the
basic type cpitch shown in Table 1, the derived viewpoint cpint [14] is defined
by the function:

1 if j =1,

Vepiten(€j) — Yepiten(€j—1) otherwise.

Vepint (eji )= {

Linked Viewpoints A system of viewpoints modelling primitive types will have
limited representational and predictive power due to its inability to represent
any interactions between those individual types [13]. Linked viewpoints are an
attempt to address this problem and were motivated by the direct product GISs

described in [18]. A product type T =171 ® ... ® T, between n constituent
types 71, ..., T, has the following properties:

(1l =[n] x X [Tl

(r) = U m)

k=1

[r] = [m1] and ... and [7,]

W (el) = € if ,,(¢]) is undefined for any i € {1,...,n}
Y W (€))L, W, (€))) otherwise.

A linked viewpoint is one which models a product type. Linked viewpoints add to
the representation language the ability to represent disjunctions of conjunctions
of attribute values (as opposed to simple disjunctions of attribute values). To
give an example, it was found in [13] that a viewpoint linking melodic pitch
interval with inter-onset interval (cpint ® ioi) proved useful in modelling the
chorale melodies harmonised by J. S. Bach. This finding suggests that these two
attributes types are correlated in that corpus.

Test Viewpoints A test viewpoint models a Boolean-valued attribute type and
is used to define locations in a sequence of events [19]. An example is the fib
viewpoint defined in [14] as follows:

T if Wposinbar<€{) = 1,
F otherwise

Wein(e]) = {

where posinbar is a derived type giving the relative position of an event in the
bar (e.g., [1]posinbar = the first event in the current bar).
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Viewpoint Predictions (Long term) Viewpoint Predictions (Short term)

[ ] - |

‘ Combine Viewpoint Predictions

‘ Combine Viewpoint Predictions

‘ Combine LTM and STM Predictions ‘

Final Prediction

Fig. 1. The architecture of a multiple viewpoint system

Threaded Viewpoints Types whose values are only defined at certain points in
a piece of music (e.g., the first event in each bar) are called threaded types and
viewpoints modelling these types are called threaded viewpoints. Threaded view-
points model the value of a base viewpoint at temporal or metric locations where
a specified test viewpoint returns true and are undefined otherwise [19]. The base
viewpoint may be any primitive or linked viewpoint. Threaded viewpoints were
developed to take advantage of structure emerging from metrical grouping and
phrasing in music. The alphabet of a threaded viewpoint is the Cartesian product
of the alphabets of the base viewpoint and a viewpoint, ioi, representing inter-
onset intervals [19]. To take an example, consider the thrbar viewpoint defined
in [13] constructed from the base viewpoint cpint and the test viewpoint fib.
This viewpoint represents the melodic intervals between the first events in each
consecutive bar and is undefined at all other locations in a melodic sequence.
Its viewpoint elements consist of pairs of cpint and ioi elements correspond-
ing to the pitch interval between the first events in two successive bars and the
inter-onset interval between those events.

2.2 Modelling Music with Multiple Viewpoints

The Overall Architecture For our purposes, a statistical model associated
with a viewpoint 7 is a function m, which accepts a sequence of events in 7* and
which returns a distribution over [7] reflecting the estimated conditional proba-
bilities of the identity of the next viewpoint element in the sequence (see [13, 20]
for further description of the nature of such models). Examples of such models
include n-gram models which have been used for automatic classification of mu-
sical works [9], polyphonic score retrieval [6] and modelling of music perception
[10, 11], and dictionary based statistical models which have been used for au-
tomatic music classification [7], computer improvisation with human performers
[4] and computer-assisted composition [2].
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A predictive system operating on a multiple viewpoint representation lan-
guage consists of a number of models m,,, ..., m,, corresponding to the collec-
tion of viewpoints 7,...,7, in the multiple viewpoint system. For each view-
point, we actually employ two models: a long-term model (LTM) and a short-
term model (STM). The LTM is trained on the entire training corpus while the
STM is constructed online for each composition modelled and is discarded af-
ter the relevant composition has been processed. The motivation for using an
STM is to take advantage of recently occurring sequences whose structure and
statistics may be specific to the individual composition being predicted. The use
of an STM has been found to improve the prediction performance of multiple
viewpoint models of music [14, 20]. The predictions of both long- and short-term
models must be combined to produce a final prediction (see §3). A number of
general architectures can be envisaged to achieve this combination:

1. combine the STM and LTM predictions for each viewpoint individually and
then combine the resulting viewpoint predictions;

2. combine the viewpoint predictions separately for the long- and short-term
models and then combine the resulting LTM and STM predictions;

3. combine all long- and short-term viewpoint predictions in a single step.

We follow previous research [13] in choosing the second of these alternatives
(see Figure 1). Two additional issues arise from the fact that our models accept
sequences in [7]* rather than £* and return distributions over [r] rather than &:
first, the corpus of event sequences in £* must be preprocessed into sequences
in 7% which are used to train the models; and second, the resulting distribution
over [7] must be postprocessed into a distribution over ¢ so it may be combined
with distributions generated by other models. These issues are discussed in turn.

Preprocessing the Event Sequences We may convert sequences in £* to
sequences in [7]* using the function @, : & — [r]* [13] such that:

£ ifel =¢
D(e}) = Do) if W (ef) =L
D, ("W, (e;) otherwise

Since ¥, (e}) = L = &.(e}) = &, ('), it is necessary to check that ¥, (e?)
is defined to prevent the same sequence in [7]* being added to the model more
than once [13].

Completion of a Multiple Viewpoint System A model m., returns a dis-
tribution over [r] but, in order to combine the distributions generated by the
models for different viewpoints, we need to convert them into distributions over
the basic event space £. In the interests of efficiency, prediction is elicited in
stages, one for each basic type of interest [14]. Only those viewpoints which
contain in their type set the basic type, 73, currently under consideration are
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activated at each stage. The conversion is achieved by a function which maps
elements of [7] onto elements of [7]:

Wy & x [r] = P(m])

where P(S) denotes the power set of set S. The function ¥, is implemented by
creating a set of events each of which corresponds to a distinct basic element
in [7p]. A set of sequences is created by appending each of these events to the
sequence of previously processed events in the composition. By calling the func-
tion ¥, on each of these sequences each element in [73] is put into the mapping
with the current element of [r]. The mapping is, in general, many-to-one since
a derived sequence @, (e}) could represent many sequences of events other than
el. As a result, the probability estimate returned by the model for the derived
sequence must be divided equally among the basic event sequences onto which
it maps.

A model m, must return a complete distribution over the basic attributes
in (7). This does not present problems for basic viewpoints where the view-
point domain is predefined to be the set of viewpoint elements occurring in the
corpus.? However, for derived viewpoints, such as cpint, it may not be possible
to derive a complete distribution over [cpitch| from the set of derived elements
occurring in the corpus. To address this problem, the domain of each derived
type 7 is set prior to prediction of each event such that there is a one-to-one
correspondence between [7] and the domain of the basic type 7, € (1) currently
being predicted. We assume that the modelling technique has some facility for
assigning probabilities to events that have never occurred before [13, 20]. If no
viewpoints predict some basic attribute then the completion of that attribute
must be predicted on the basis of information from other sources or on the basis
of a uniform distribution over the attribute domain. In this research, m,, was
used to achieve the completion of attribute 73, in such cases.

Once the distributions generated by each model in a multiple viewpoint sys-
tem have been converted to complete distributions over the domain of a basic
type, the distributions may be combined into final distributions for each basic
type. The topic of this paper is how best to achieve this combination and two
methods are discussed in detail in §3.

2.3 Performance Metrics

Given a probability mass function p(a € A) = P(X = a) of a random variable
X distributed over a discrete alphabet A, the entropy is calculated as:

H(p) = H(X) =~ p(a)log, p(a). (1)

acA

2 The domain of a viewpoint modelling the onset time of events is potentially infinite
and assumes a value derived from the onset time of the previous event and the set
of inter-onset intervals that occur in the corpus [13].
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Shannon’s (1948) fundamental coding theorem states that entropy provides a
lower bound on the average number of binary bits per symbol required to encode
an outcome of the variable X'. The corresponding upper bound occurs in the
case where each symbol in the alphabet has an equal probability of occurring,
Va € A,p(a) = @, as shown in Equation 2.

Hma:r:(p) = Hmaz(A) = 10g2 |A‘ (2)

Entropy has an alternative interpretation in terms of the degree of uncertainty
that is involved in selecting a symbol from an alphabet: greater entropy implies
greater uncertainty. In practise, we rarely know the true probability distribution
of the stochastic process and use a model to approximate the probabilities in
Equation 1. Cross entropy is a quantity which represents the divergence between
the entropy calculated from these estimated probabilities and the source entropy.
Given a model which assigns a probability of p,, (a]) to a sequence aj of outcomes
of X, we can calculate the cross entropy H (p, a{) of model m with respect to
event sequence a{ as shown in Equation 3.

. 1< .
H(pm,a}) = - > logy pm(ailai™) (3)
=1

While cross entropy provides a direct measure of performance in the field of data
compression, it has a wider use in the evaluation of statistical models. Since
it provides us with a measure of how uncertain a model is, on average, when
predicting a given sequence of events, it can be used to compare the performance
of different models on some corpus of data [21, 22].

3 Combining Viewpoint Prediction Probabilities

3.1 Introduction

In this section, we shall describe several techniques for combining the distri-
butions generated by statistical models for different viewpoints. Let 7, be the
basic viewpoint currently under consideration and [1,] = {t1,1o,..., ¢} its do-
main. Our multiple viewpoint system has n viewpoints 71, ..., 7, which are de-
rived from 7, and there exist corresponding sets of long-term models LTM =
{ltmq,ltma, ..., ltm,} and short-term models STM = {stmy, stma, ..., stm,}.
We require a function that combines the distributions over 7, generated by sets
of models. As described in §2.2, this function is used in the first stage of combina-
tion to combine the distributions generated by the LTM and the STM separately
and, in the second stage of prediction, to combine the two combined distribu-
tions resulting from the first stage. In what follows we describe functions for
combining individual probabilities which may then be applied to sorted distri-
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butions over 7,. For the purposes of illustration, we employ an anonymous set
of models M =mq,ma,...,my.>

3.2 Arithmetic Combination

Perhaps the simplest method of combining distributions is to compute the arith-
metic mean of the estimated probabilities for each symbol ¢ € [73] such that:

Py =3 plt).

meM

This combination technique may be improved by weighting the contributions
made by each of the models such that:

p(t) = S wm

A method for calculating the weights, w,, is described in [14]. It is based on
the entropies of the distributions generated by the individual models such that
greater entropy (and hence uncertainty) is associated with a lower weight. The
weight of model m is wy, = Hyelative(Pm) 0. The relative entropy Helative(Pm)
of a model is given by:

H H. if H, >0
Hrelative(pm) = { ) (pm)/ max(pm) :)theT‘:;;S(e[TbD

where H and H,,,, are as defined in Equations 1 and 2 respectively. The bias b €
7 is a parameter giving an exponential bias towards models with lower relative
entropy. Note that with b = 0, the weighted arithmetic scheme is equivalent to
its non-weighted counterpart. This weighting mechanism is described in more
detail in [14] where the weighted arithmetic mean was used for combining both
viewpoint predictions and the predictions of the long- and short-term models
while this method was used for combining viewpoint predictions only in [13].*

3 We refer to combination schemes based on the arithmetic mean as arithmetic com-
bination and those based on the geometric mean as geometric combination. Similar
distinctions have been made in the literature between linear and logarithmic opinion
pools [23], combining classifiers by averaging and multiplying [24] and mixtures and
products of experts [25, 26].

* Other methods were also examined in [13] including a ranking-based combination
method as well as a method based on the rule of combination used in the Dempster-
Shafer theory of evidence.
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Table 2. The basic and derived viewpoints used in this research

T Class [.]- [7] ()
onset basic  onset time of event {0,1,2,...}  {onset}
cpitch  basic chromatic pitch (MIDI) {60,...,79,81} {cpitch}
ioi derived inter-onset interval {1,...,20} {onset}
fib derived (not) first event in bar {T,F} {onset}
cpint derived sequential melodic interval  Z {cpitch}
cpintfref derived vertical interval from referent {0,...,11} {cpitch}

3.3 Geometric Combination

We present a novel method for combining the distributions generated by our
statistical models which is based on a weighted geometric mean. A simple geo-
metric mean of the estimated probabilities for each symbol ¢ € [7] is calculated
as:

p(t) = p, T] o).

meM

where R is a normalisation constant. As in the case of the arithmetic mean, this
technique may be improved by weighting the contributions made by each of the
models such that:

o) = o T pml)

meM

where R is a normalisation constant and the weights w,, are normalised such that
they sum to one. We may use the same weighting technique as for arithmetic
combination (see §3.2) and, once again, with b = 0, the weighted geometric
scheme is equivalent to its non-weighted counterpart.

4 Experimental Procedure

The corpus of music used is a subset of the chorale melodies harmonised by
J. S. Bach. A set of 185 chorales (BWV 253 to BWV 438) has been encoded
by Steven Rasmussen and is freely available in the **kern format [27] from
the Centre for Computer Assisted Research in the Humanities (CCARH) at
Stanford University, California (see http://www.ccarh.org). We have used cross
entropy, as defined in Equation 3, computed by 10-fold cross-validation [28, 29]
over the corpus as a performance metric for our models. The statistical model
used was a smoothed, variable-order n-gram model described in more detail
n [20]. Since the goal of this research was to examine methods for combining



Methods for Combining Statistical Models of Music 305

[ 9 ﬂ T m ]

J 1 1 1 ‘ ‘ 1 1 1 ‘
onset 0 24 48 72 96 120 144
cpitch 71 71 71 74 72 72 71
ioi L 24 24 24 24 24 24
fib T F F F T F F
cpint L 0 0 3 -2 0 -1
cpintfref 4 4 4 7 5 5 4
cpint®ioi L (024) (024) (324) (-224) (024) (-124)

Fig. 2. The first phrase of the chorale melody Meinen Jesum laf3’ ich nicht, Jesus
(BWV 379) represented as viewpoint sequences in terms of the basic, derived
and linked viewpoints used in the experiments

viewpoint predictions, we have used a constant set of viewpoints corresponding
to the best performing of the multiple viewpoint systems described in [13]. This
system consists of the following viewpoints:

cpintfref ® cpint,
cpint ® ioi,
cpitch,

cpintfref ® fib.

It is capable of modelling the basic type cpitch alone. See Table 2 for details
of each of the viewpoints in this system and Figure 5 for an exemplary use of
these viewpoints in representing an excerpt from a chorale melody in terms of
viewpoint sequences. We have examined the weighted arithmetic and geometric
combination schemes described in §3 in both stages of combination with the bias
settings drawn from the set {0,1,2,3,4,5,6,7,8,16,32}.5

5 Results and Discussion

The results of the experiment are shown in Table 3 which is divided into four sec-
tions corresponding to the four combinations of the two combination methods.
Figures in bold type represent the lowest entropies in each of the four sections of
the table. The results are also plotted graphically in Figure 5. The first point to
note is that the multiple viewpoint system is capable of predicting the dataset

® The Dempster-Shafer and rank-based combination schemes described in [13] were
found to perform less well than these two methods (when optimally weighted) and
are not included in the results.
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with much lower entropies (e.g., 2.045 bits/symbol) than those reported in [20]
for a system modelling chromatic pitch alone (e.g., 2.342 bits/symbol) on the
same corpus. This replicates the findings of [13] and lends support to the asser-
tion that the multiple viewpoint framework can increase the predictive power
of statistical models of music. It is also clear that the use of an entropy based
weighting scheme improves performance and that performance can be further
improved by tuning the bias parameter which gives exponential bias towards
models with lower relative entropies [14].

Regarding the combination methods, the results demonstrate that the
weighted geometric combination introduced in this paper tends to outperform
arithmetic combination and that this effect is much more marked in the case of
viewpoint combination than it is for LTM-STM combination. Some theoretical
justification for this result can be found in the literature on combining classifier
systems. Hinton [25, 26] argues that combining distributions through multipli-
cation has the attractive property of making distributions “sharper” than the
component distributions. For a given element of the distributions it suffices for
just one model to correctly assign that element a low estimated probability. If
this is the case, the combined distribution will assign that element a low proba-
bility regardless of whether other models (incorrectly) assign that element a high
estimated probability. Arithmetic combination, on the other hand, will tend to
produce combined distributions that are less sharp than the component distri-
butions and is prone to erroneously assigning relatively high estimated proba-
bilities to irrelevant elements. However, since the combined distribution cannot
be sharper than any of the component distributions arithmetic combination has
the desirable effect of suppressing estimation errors [24].

In [24] the performance of arithmetic and geometric combination schemes is
examined in the context of multiple classifier systems. In accordance with the-
oretical predictions, an arithmetic scheme performs better when the classifiers
operate on identical data representations and a geometric scheme performs bet-
ter when the classifiers employ independent data representations. Analogously,
we hypothesise that when combining viewpoint predictions (derived from dis-
tinct data representations), a geometric scheme performs better since it trusts
specialised viewpoints to correctly assign low probability estimates to a given
element. Consider movement to a non scale degree as an example: a model asso-
ciated with cpitch might return a high probability estimate for such a transition
whereas a model associated with cpintfref is likely to return a low estimated
probability. In cases such as this, it is preferable to trust the model operating
over the more specialised data representation (i.e., cpintfref).

When combining LTM-STM predictions (where each distribution is already
the result of combining the viewpoint predictions), on the other hand, a premium
is placed on minimising estimation errors. For example, for n-grams which are
common in the current composition but rare in the corpus as a whole, the LTM
will return low estimates and the STM high estimates. In cases such as this, it
is preferable to suppress the estimation errors yielded by the LTM. The finding
that geometric combination still outperforms arithmetic combination in LTM-
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STM combination may be a result of the fact that n-grams are added online to
the LTM as prediction progresses much as they are for the STM [20]. Finally,
it is possible that the difference in relative performance of the geometric and
arithmetic schemes for LTM-STM and viewpoint combination is a result of the
order in which these combinations are performed (see Figure 1). However, we
hypothesise that this is not the case and the observed pattern of results arises
from the difference between combining distributions derived from distinct data
representations as opposed to combining two distributions already combined
from the same sets of representations. Further research is required to examine
these hypotheses in more depth.

Another aspect of the results that warrants discussion is the effect on per-
formance of the bias parameter which gives an exponential bias towards distri-
butions with lower relative entropy. Overall performance seems to be optimised
when the bias for LTM-STM combination is relatively high (between 6 and 16)
and the bias for viewpoint combination is relatively low (between 1 and 5). We
suggest that this is due to the fact that at the beginning of a composition, the
STM will generate relatively high entropy distributions due to the lack of con-
text. In this case, it will be advantageous for the system to strongly bias the
combination towards the LTM predictions. This is not an issue when combining
viewpoint predictions and more moderate bias values tend to be optimal. Other
research has also found that high bias values for the combination of the LTM-
STM predictions tend to improve performance leading to the suggestion that the
weight assigned to the STM could be progressively increased from an initially
low value at the beginning of a composition as more events are processed [14].

The results shown in Table 2 also reveal an inverse relationship between
the optimal bias settings for LTM-STM combination and those for viewpoint
combination. With high bias values for LTM-STM combination, low bias values
for viewpoint combination tend to be optimal and vice versa. High bias settings
will make the system bolder in its estimation by strongly favouring sharper
distributions while low bias settings will lead it to more conservative predictions.
On these grounds, with all other things being equal, we would expect moderate
bias values to yield optimal performance. If an extreme bias setting is preferred
in one stage of combination for some other reason (e.g., the case of LTM-STM
combination just discussed), the negative effects may, it seems, be counteracted
to some extent by using settings at the opposing extreme in the other stage.
Although these arguments are general, we would expect the optimal bias settings
themselves to vary with different data, viewpoints and predictive systems.

6 Conclusions

We have presented an experimental comparison of the performance of two tech-
niques for combining distributions within the multiple viewpoint framework for
representing and modelling music. Specifically, a novel combination technique
based on a weighted geometric mean was compared to an existing technique
based on a weighted arithmetic mean. We have used an entropy based tech-
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nique to compute the weights which accepts a parameter which fine-tunes the
exponential bias given to distributions with lower relative entropy. A range of
parameterisations of the two techniques have been evaluated using cross entropy
computed by 10-fold cross-validation over a dataset of chorale melodies har-
monised by J. S. Bach. The results demonstrate that the weighted geometric
combination introduced in this research tends to outperform arithmetic combi-
nation especially for the combination of viewpoint models. Drawing on related
findings in previous research in machine learning on combining multiple classi-
fiers, it was hypothesised that this asymmetry arises from the difference between
combining distributions derived from distinct data representations as opposed
to combining distributions derived from the same data representations.

We would like to conclude the paper by suggesting some directions we feel
would be fruitful for future research. Perhaps the most important limitation of
this research is that results have been obtained for a single dataset (representing
a single genre of melodic music) using a single set of viewpoints. However, this
research does make specific hypotheses to be refuted or corroborated by further
experiments which go beyond these restrictions. Our confidence in the generality
of these results obtained would be increased if they could be replicated using
different corpora of music, different viewpoint systems and other forms of music.
It would also be useful to conduct a thorough examination of the effect of the
overall architecture of the system on performance. How is performance affected,
for example, if we first combine the LTM-STM predictions for each viewpoint
and then combine the resulting distributions? It seems unlikely that a single
combination of all distributions will improve performance but this conjecture
can only be tested by empirical experimentation. Finally, it remains to be seen
whether other combination schemes developed in the field of machine learning
[30, 31, 32] can be profitably applied to modelling music with multiple viewpoint
systems.

This research has examined a number of techniques for improving the pre-
diction performance of statistical models of music. These techniques have been
evaluated in an application neutral manner using cross entropy as an index of
model uncertainty. In statistical language modelling, it has been demonstrated
that cross entropy provides a good predictor of model performance in specific
practical contexts:

“For a number of natural language processing tasks, such as speech recog-
nition, machine translation, handwriting recognition, stenotype tran-
scription and spelling correction, language models for which the cross
entropy is lower lead directly to better performance.”

21, p. 39].

While corresponding results are not currently available in the literature on com-
putational music research, we believe the techniques presented in this paper can
be applied profitably to practical problems in the modelling and retrieval of
music.
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Abstract. A more natural way of searching a song is by humming or
singing, especially when people can not remember the title, singer or
lyric, but can remember a piece of melody. This paper is about how
to represent melody so that such query is possible and efficient. We
propose a constraint-based method. Considering both local and global
constraints of pitch and duration, we can derive a melody’s canonical
form by using linear algorithm Reduce and Weight. This representation is
at least as precise as interval-based method, but avoid much of redundant
searching since it is more specialized. The significance of our method is
that the tonal context, a key factor of music, is taken into account. This
feature makes it not only a good candidate for building an efficient music
database system, but also a foundation for further investigation of music,
such as style analysis, pattern extraction, and finding other constraints.

1 Introduction to Constraint Database

Constraint Database (CDB)[18] is an evolution of Constraint Logic Program-
ming (CLP) [10] and Relational Database[9], where we can encode the data set
in some type of constraint formula. The data set, finite or infinite, is stored
compactly which allows much more efficient operations. The key to CDB is that
constraint itself can be viewed as the ground tuple and generalized to allow
complex constraint over many attributes.

Kanellakis[16], defines CDB as follows:

— A generalized k-tuple: a finite conjunction of constraints ¢1 A - -+ A @, where
each ¢; (i =1,--+,n) is a constraint over variables x1, - -, x.

— A generalized relation of arity k: a finite set r = {41, -+, ¥} of a generalized
k-tuple over the same variables.

— A generalized database: a finite set of generalized relations.

The formula corresponding to a generalized relation ris the disjunction ¥ V
-+ Vb, . We use ¢, to denote the quantifier-free formula corresponding to relation
r. Quantifier Elimination (QE) is the removal of all quantifiers, 3 and V, from
a quantified formula. A First-Order theory allows QE if, for each quantified
formula, there exists an equivalent quantifier-free formula.

From the above we can see that the tuple is defined as a conjunction of
constraints. Under such a framework it is not easy to implement the algebra,

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 313-329, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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or the database operations, particularly, projection. Therefore we define a new
framework of CDB, basing on the canonical representation of constraints:

— An atomic constraint (component) ¢ is the constraint formula over a set of
variables x1, -+, z) (in some cases, the order of variables are also needed to
be considered), indicating the condition that these variables need to satisfy.
We use D(c) to denote the solutions of ¢. ¢ normally has a fixed structure
over fixed number of variables.

— Canonical Form cf is a finite set of atomic constraints {c1,---,c,}, where
D(¢;) N D(¢j) = 0,1 < 4,5 < n,i# j. An important property of canonical
form is that it represents the data set D(cf) = D(c1)U---UD(c,,) uniquely:
cfi =cf2 < D(cf1) = D(cf2), cfi # cf2 <= D(cf1) # D(cf2).

— A tuple tis an atomic constraint, and a relation can be written as a dis-
junction ¢y V -+ - V ¢p,.

Canonical form is a succinct and precise representation of constraints. Find-
ing canonical form of constraints usually involves techniques of constraint solving
from CLP and symbolic computation.

An important property of canonical form representation is its uniqueness—
there is only one representation for a fixed data set and we are able to distinguish
two different sets. For example, the constraints 3x — 3y = 3 and 2z — 2y = 2
represent the same data set although they look different. However, if we define
the canonical form of such constraints to be the form that y’s coefficient is 1,
these equivalent constraints will be reduced to only one formula z—y = 1. Due to
uniqueness, the equivalence operation can be done by just checking whether two
constraints have the same canonical representation. Based on canonical form of
constraints, we can extend relational databases with certain type of constraints,
and define constraint algebras.

Music is composed of a sequence of sounds. Do these sounds satisfy any kind
of constraint? How to describe the constraint? Sect. 2 will give an introduction to
some musical knowledge. Then Sect. 3 focuses on proving the canonical form for
melody constraints by using Reduce and Weight algorithms. The experimental
results are given in Sect. 4. Sect. 5 is the proposal for applying this representation
in building music databases, and discussion of some further questions. Final
section is the conclusion of the paper.

2 Basic Music Concepts

The music is usually taken as a piece of harmonic sound, and provides us with
great entertainment. The following are several music concepts defined on tech-
nical level(refer to [8,17]):

Pitch. Pitch is related to the fundamental frequency of a sound. The higher the
frequency, the higher the sound is.

Note. People use symbols like C D E F, etc., to represent pitch classes. For
example, note A4 is defined to have a frequency of 440 Hz.
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Octave. If one note has double the frequency of another, then it is said to be
one octave above the lower note, and we usually use the same note to represent.
Semitone. An octave is divided into 12 parts evenly, which is called semitones.
Wholetone is the double of a semitone.

Interval. Interval is the number of semitones between two notes, e.g., the inter-
val between C and D is 2.

Scale. Though an octave contains 12 notes, a scale only uses a subset of them.
For example, the C major scale consists of the notes C D EF G A B C in
ascending order of pitch’s frequency, where the intervals between E and F, and
between B and C are semitones, the others are wholetones. In other words, a
scale contains semitone intervals at two fixed positions in one octave, while the
others are wholetone intervals.

Sharp (#) and Flat(b) Symbols. Given a note, e.g., C, a note which is one
semitone higher or lower than C can be written as C# or C? respectively.
Duration. The time that a note sounds. Usually it is measured in second.
Melody. Melody is the principal part in a harmonized piece of music, which
helps people distinguish different music. A melody is mainly determined by the
following two sequences of constants : the interval and the ratio of durations
between two adjacent pitches.

Contour. A rough description of a melody. Notes can be reduced into a string
format, such as USDSUUD, where U, D, and S represent whether or not a note
is Up, Down or Same compared with the preceding note.

Music Notation Systems. Music notation, the way of writing down music,
has developed over many years.

The ancient Greeks and Romans used letters of their alphabets to symbolize
notes, from which came our use of the letters A to G to represent notes which
is still common in many countries.

France, Italy and other associated countries tend to use the tonic sol fa names
(based on C as Doh) as names of notes, rather than alphabetical letters. Most
people know of it from the song “Doh re me”, from the 1959 film “The Sound of
Music” by Rogers and Hammerstein. However, the origins of the tonic sol fa are
the eleventh century. A Benedictine monk, Guido of Arezzo, took the first notes
of each line of a Latin hymn, written around A.D. 770, make them to be the first
six notes of a major scale, and used the syllables of the Latin words, “doh”, “re”,
“mi”, “fa”; “sol” and “la”, that were sung on those notes. The seventh note “si”
was added later because it was probably not a part of the normal scale at that
time.

Modern notation (five-line stave notation) is much more precise than these
older notations, developed initially in the fourteenth century and spread to the
rest of the world. Nowadays stave notation becomes the dominant music lan-
guage.

In China, the most popular music notation in elementary school education
is number notation developed in the twentieth century, based on tonic sol fa
system. That gives each note a number 1 2 3 4 5 6 7, where they are sung
as “doh”, “re”, “mi”, “fa”, “sol”, “la” and “si”. A melody is represented by
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a sequence of numbers, together with some other symbols like duration of a
note. In real singing, we need to adjust 1 to proper pitch, such as 1 =C. In
this way we can change the tonal context from one to another easily. There is
an interesting fact that, after some training, i.e., being more sensitive to music,
people are able to translate a song into numbered notes just by listening several
times, without any help from instruments. The number sequences of a melody
translated by different people are almost same, and it doesn’t matter which scale
the melody is played. It seems that the relative information among pitches of a
melody ensures a unique number sequence in general. Our idea is to translate
pitches into numbers automatically and prove the correctness and uniqueness of
the constraint-based representation. An example of stave and number notation
systems for a part of melody from movie Titanic is given in Fig. 1.

MY HEART WITLL. CO ON

(Lorve Theme from Titarac') Iusic by J&MES HORNEE
moderately fast Words by WILL JENNINGS
I . . —— .
% i — 0 B — —T1 i — 1
- T I S— S——— i i — ™ — 7
mP L LJ
—
1=F 1. 1 1 1 T 1— 1 7 1—2 3 — 2 —
Bww oty nighl in my deam [ see you I Tl yuu
L]
 — - —— t —F T— - k-
i I T T I — T T T
T L ——— = 1 i R —
b o
1. 11 1 T 1— 1 5 — — — 1 11 1
that how T know  you 20 [ Far acmss  the
f‘ﬂ. r . t r
— t — T — T — b
i T i — T I T I T i ——
I = o — — = ™ — 7 — o
7 « ¥ - —a——+
T 1— 1 T 1— 2 3 — 2 — 1 i1 1
dis  tance and spac - es be tween g, wou  have come to
“
ﬁwn I I —
i T t — T —
i T I — T — T
— = — — — i
b - wf -+
T 1 — 1 5 —— — 1— — — 2— — 8§
show  you 0 on. HMear far wher

Fig. 1. An example of stave notation and number notation

3 Melody Constraints

CDBs combine the constraint solving techniques with relational database theory,
so that we can represent data in a more natural but more compact way, while
the features of relational databases are still preserved. However, the constraint
algebra should be redefined and designed according to the type of constraints.
We have given the definition of CDB framework in Sect. 1, where constraints
are reduced to canonical form: unique representation and no redundancy. Based
on canonical representation, we can give the definition of operations such as
congunction, disjunction, projection, negation, etc.
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We notice that, although the original constraints are variant, there could exist
a unique representation as long as the primitive data represented by these con-
straints is fixed. It requires us to design such an algorithm that can always gener-
ate a unique representation from original formula for a fixed data set. There may
exist many such algorithms. But as long as we use one from beginning to end, the
uniqueness property is always preserved. Uniqueness property makes compari-
son of constraints possible and easier. For example, we can check whether two
different constraints are equivalent or approximate to each other by comparing
their forms.

A melody is mainly decided by notes. However, people can still recognize the
melody if its notes are increased or decreased by same amount of interval, just
it sounds a little higher or lower. The melody is fixed by the relative interval
information in notes. This phenomenon is called transposition invariant. If we
take notes as constraints, can we find melody’s canonical form? Can we design
such an algorithm that ensures us a unique representation for a fixed melody?

3.1 Pitch Constraints

Let x; represent the pitch value, where 1 < ¢ < m, m is the number of pitches
in a melody, and the binary operator “—” means the calculation of interval (the
number of semitones) between two pitches.
Pitch’s Local Constraint

The melody can still be recognized when its notes are increased (or decreased)
by same amount of intervals, because the relative interval information between
adjacent pitches is preserved. Therefore, given a melody, we have the following
constraints:

.TJZ‘_:,_l—.’IJZ‘:NZ‘ 1§i§m—1 (1)

where N; is a constant. Then a melody can be expressed as

—1

/\ ($i+1 — Ty = Ni) (2)

i=1

Pitch’s Global Constraint
From music theory, we have the following facts (see [1,8,15] also):

— Although one octave is divided into 12 notes, we only use a subset of them
as a scale. For example, in C major scale C D EF G A B C, the intervals of
E-F (the third and the fourth notes) and B-C (the seventh and the eighth
notes) are semitones, and the others are wholetones. The complement set
consists of 5 remaining notes.
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— A piece of music is composed of notes in a scale and notes in the complement
set. The music that consists of notes largely from a scale is called diatonic
music, or tonal music, otherwise it is atonal music.

— Through thousands of years of musical evolution, most music, especially the
popular music, are diatonic music.

— The notes in the complement set are considered unstable. Given a tonal
context ( music composed of a certain scale) , unstable element was itself
poorly remembered [15]. For example, in C major scale, the C* is hard for
people to catch, remember, and sing.

Based on the above facts and observations, we make the following assump-
tions to simplify the problem: 1. people use notes in a scale evenly while com-
posing music, or each note of a scale appears at least once in a melody. 2. do
not use unstable notes, i.e., a melody does not contain unstable notes. Based
on the above discussion and assumptions, we can summarize our results in the
following Theorem:

Theorem 1 All pitches from a melody form and follow a scale structure:

Jz;Va; (((z; — xi)modl2) € {0,2,4,5,7,9,11}) (3)

which means that, we can find a note x; which is the first element in a scale.
The intervals (after mod) between x; and other notes can only be the values in
the set {0,2,4,5,7,9,11}.

[Je))

CEN]
—_
[\S]
(O8]
N
(9,
(o)}
~
—
[\]

Fig. 2. The structure of a scale

Since the notes C D E etc. are absolute pitch names, denoting an absolute
scale, we use numbers 1,2, 3,4,5,6,7, 1 to represent a general scale. One . on the
top means one octave increase, and on bottom means one octave decrease. Fig. 2
is the structure of a scale (major/minor), where the vacancies are the unstable
elements and can be written as 0.5 plus the previous number, e.g., C#= 1.5 in
a C major scale.

Algorithm Reduce
input: a sequence of pitches p1,ps2,- -, Pm
output: a sequence of numbers ni,no, -+, Ny,
let Number[7][m]| be an array to store number sequences
let Error[7] be an array to count the unstable elements

3

3 pi can be an absolute note such as C, D, etc., or the frequency value.
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pick up pi, the median from pi,---,pm
for i=1to 7
assign pr to location ¢ in Fig. 2
for j=1tom
assign location for p; according to the interval between
pr and p; , and store the location in Number[i][j]
if p; is in vacancy
Error[i] + +
endif
endfor
endfor
return Number[l], where Error[l] is minimum (= 0)
Proof of Correctness:
Reduce returns the formula

/\(xi =n;) (4)

where n;s are the number in the set {1,2,3,4,5,6,7} plus some (> 0) dots
on the top or bottom. Obviously, it satisfies formula (2), because p;11 — pr, =
Ni+1 — Nk, Pi — Pk = Ny — N == Ni41 — N = Pit1 —Pi = Tij41 —Tj = Nj41 — Ny =
pi+1—pi = N;. For formula (3), we just need to choose the pitch which is assigned
1 as x;, then the distance(after mod12) between z; and any other pitch can be
and only be in the set {0,2,4,5,7,9,11}, i.e., the global constraint is satisfied.
Proof of Uniqueness

Let p1,- -+, pm be a sequence of notes and pi be the median note. Let ©; be
an assignment with ¢ € {1,2,3,4,5,6, 7}, p is assigned a location ¢ in the scale
structure and the relative intervals between any two notes are preserved. Let
a(6;) be the number of notes that are not in vacancies, 5(0;) be the number of
notes that are in vacancies.

Definition 1 A perfect assignment ©4 is the assignment © with 3(0) = 0.

Definition 2 By a reduced * scale we mean one octave only, and it consists of 7
elements, where the interval between the 3rd and jth elements is one semitone,
and the other intervals are one wholetone. A reduced assignment 6 is defined
as follows: modulate and assign notes into a reduced scale by shifting n octaves,
where n is an integer.

The five vacancies {1, 2, 3,4, 5} in one octave are written as 1.5 2.5 4.5 5.5 6.5
in ascending order of their positions. Given a melody and a reduced assignment

4 Here the reduce is not the algorithm Reduce, but a mod operation over a data
structure
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0, if we use p; to denote the number of notes that are assigned j, and use
o1 to denote the number of notes that are in vacancy [ (j € {1,2,3,4,5,6,7},
1€{1,2,3,4,5}), then we have:

Lemma 1 Given a sequence of notes pi,---,pm and the median note py, we
have a(0;) = a(60;), and 5(0;) = B(6;), where i €{1, 2, 3, 4, 5, 6, 7, 1.5, 2.5,
4.5, 5.5, 6.5}.

Proof: After being shifted by n octaves, a note still keeps its original status:
it is in vacancy iff it was in vacancy before shifting; it is mot in vacancy iff it
was not in vacancy before shifting. Therefore, the number of unstable elements
1s invariant under the assignment ©; and the reduced assignment 6;.

Definition 3 If a melody is composed of notes only from a scale, i.e., does not
contain unstable elements, we call it a pure diatonic melody.

Lemma 2 For a pure diatonic melody, ©O4 exists.

Proof: Let 1,2,3,4,5,6,7 represent the elements in the reduced scale, then
the reduced assignment 6 ensures that the melody can be transformed into a
sequence of numbers from the set {1,2,3,4,5,6,7} only, i.e., 5(8) = 0. Since
B(O) = B(0) =0 (by Lemma 1), O4 ewists.

Theorem 2 Given a pure diatonic melody, if there exists such a reduced assign-
ment 6 that p; > 0 and o, = 0, for Vj € {1,2,3,4,5,6,7}, VI € {1,2,3,4,5},
then ©4 is unique.

Proof: From Lemma 2 we know that ©4 exists, and the corresponding reduced
assignment can be 0 , since f(O) = () = Yo, = 0. Let C D EF G A B
represent the original reduced scale, and let 01 = 0, i.e., 6 is the assignment of
C=1,D=2E=3F=4,G=5,A=6,B="17. Then we will get the following
assignments:

—0,:1234567, 6(6;)=0

— 0,:2345567 1.5, B(02) = ps+p1

— 03:34.55.5671.52.5, B(63) = ps+ ps + p1 + 02
—04,:4566.5123, 8(64) = pr

—05:5671234.5, 5(05) = ps

— 06:6 715234555, B(0s) = p1 + ps+ ps

— 07: 7152534555 6.5, 8(07) = p1 + p2+ pa + p5 + pe

From the above, we know that there is only one perfect reduced assignment—
01, while p; >0, o = 0,Vj € {1,2,3,4,5,6,7}, VI € {1,2,3,4,5}. Therefore, O
is also unique and equal to ©1 (Lemma 1).

Corollary 1 If a pure-diatonic melody contains the fourth and the seventh ele-
ments of a reduced scale, O4 is unique.

Proof: Obviously, when py > 0 and p7 >0, B(02), -, B(07) are greater than
0. ©; is the perfect assignment.
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In practice, a piece of melody is composed of notes largely from a scale and a
few from the vacancies, i.e., Xp; >> Y o;. The following results can be derived:

(01) =01+ 02+ 03+ 04+ 05
(02) = p1 + pa+ 02+ 04+ 05
(03) = pa+ ps+ p1 + p2 + 05
(04) = p7 + 03+ 04 + 01 + 02
(05) = pa+ 04+ 05 + 01 + 02
(06) = p1 + pa+ ps + 05 + 02
(07)

(01.5) = p2 + p3 + ps + pe + p7
(925) p3 + pe + pr+ 03+ 01
(0a5) = P5+,06+,01+,02+p3
(05. )

where ©4 should be redefined to be the assignment with minimal 3(6).
Theorem 3 If a melody is composed of notes satisfying:

p1+pa> 01+ 03
pa+ ps+p1+p2 > 01+ 02+ 03+ 04
p7 > 05
pa > 03
p1+pa+ps > 01+ 03+ 04
p1+p2+patps+pe> 01+ 02+ 03+ 01+ 05 (5)
P2+ p3s+ps+pe+pr> 01+ 02+ 03+ 04+ 05
p3 =+ pe+ p7r > 02+ 04+ 05
pst+pet+pi+p2tps>0+o2t+ostoatos
pe +pr+p2+p3>01+02+04a+05
p7+p3 > 02+ 05

then ©4 is unique.

Proof: The above constraints indicate 3(02) > B(61), B(03) > B(61), B(04) >
B(61), B(0s) > B(61), B(0s) > B(61), B(07) > B(61), B(61.5) > B(61), B(B2.5) >
B(01), B(0s5) > B(01), B(055) > B(61), B(0e5) > B(61) = O1 is the unique

perfect assignment.

Example 1 Let’s reduce pitch sequence E-E-F-G-B-F-E-D: we can take E as
median note, if we assign E 1, then the result will be 1 —1 — 1.5 —2.5 —4.5 —
1.5 —1—6.5, which contains 5 unstable elements. If we let E be 3, then we will
get a perfeét number sequence 3 —3 —4 —5—T7—4 —3 — 2, i.e., without any
unstable element.
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Example 2 In the theme “Love story”, the notes’ distribution on a reduced
scale is p1 = 34, pa = 25, ps = 35, ps = 13, p5s = 9, ps = 32, p7 = 23, and
the unstable elements’ distribution is p1 = 1, g2 = 1, p3 = 1, o4 = 4, p5 = 0.
The perfect assignment is unique since the notes’ distribution satisfies all the
constraints in Theorem 3.

Assign Pk
Songs with | 213 |4 |5 1]6|7
Name D | m
Happy birthday | G | 25| 7 | 07| 4 6|2 | 2 7

to you

Libiamo (from | p 1292 165 | 72 | 237 176 | 132 | 60 | 40
La Traviata)

Love story E |178| 81 52 7 113 | 57 19 30

Jingle bells A | 8| 19 0 20 41 10 0 29

Redriver valley | A | 85| 55 25 0 59 39 7 2

Fig. 3. Number of unstable elements 3(©) under different assignment (A the
perfect assignment)

Assumptions and Refinement of Reduce

The above proof is based on the assumptions: a melody keeps in one tonal
context (doesn’t change scale). However, the algorithm is still applicable in real
practice, because most music, especially the popular songs, are tonal music and
use notes largely from just one scale. The median note is usually located integer
1 to 7. However, we can refine the algorithm by iterating 12 times (or more) for
each semitone in an octave (or more than one octave), in case the picked pitch
pr happens to be an unstable element.
Handling the Change of Tonal Context in a Song

The algorithm can also be used to tell whether a music changes its scale to
another. For example, Reduce returns a number sequence with still very large
number of unstable elements, which indicates that the melody probably changes
the scale somewhere. Then the main tasks are to separate the input into two
or more segments and Reduce them individually. We can solve the problem by
auditing the density of error occurrences, and separate the sequence at the posi-
tion where large number of errors begins . Most music use one scale as the tonal
context. However, some music change scale once or twice in order to express
different emotions, e.g., at the end of the theme from Titanic, the original scale
is increased by 5 semitones.
More Than One Perfect Representation

We notice that the choice of notes in composing a song may not be even, e.g.,
some music may use 5 notes only in a scale. Therefore, Reduce algorithm may
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generate more than one perfect sequence (see Jingle bells in Fig. 3), especially
when the fourth or the seventh note of the scale is not used in the melody. Let’s
illustrate by example “Beethoven’s Ninth Symphony, Movement 4”: the input
pitches can be {EEFG GFED CCDE EDD, EEFG GFED CCDE DCC, DDEC
DEFEC DEFED CD@G, EEFG GFED CCDE DCC}. Since there is no A and

B in the above, we will have two perfect representations {3345 5432 1123 322,
3345 5432 1123 211, 2231 23431 23432 125, 3345 5432 1123 211}, and {7712 2

176 5567 766, 7712 2176 5567 655, 6675 67175 67176 562, 7712 2176 5567 655}.

To guarantee uniqueness, we need another algorithm Weight: For each scale
note, we assign a weight p according to its probability of being used. For example,
the most frequently used notes are 1 to 6. So we can assign higher weight to 1 to
6, lower weight to 5712 . Then we can scan the two perfect sequences, and sum

their weight respectively. The sequence with higher weight is our choice. In other
words, we prefer the one whose notes are more centrally located in a scale (in
the above example, {3345 5432 11 ---} is better than {7712 2176 55 ---} ). The
Reduce and Weight algorithms are both O(n) , and can be combined into one,
e.g., assign unstable element -1, and stable element a positive value according
to its frequency of usage. More precisely, we can take duration of the pitch into
account, i.e., Weight = 2211 pi X y;, where p; is the preference of using this
note in a scale, and y; is its current duration.

Max(Zpi X ;) (6)

i=1

(6) is a more precise description of melody’s global constraint than (3), where
the usage preference of each number needs further investigation. Weight returns
a most stable assignment, which has less unstable elements and the notes are
distributed centrally on a scale.

3.2 Duration Constraints

Let y; be the duration of z;, where 1 <i < m.
Duration’s Local Constraint

We know that, if we change the melody’s rhythm, it just sounds faster or
slower than the original. It is easy to find the following constraint between two
adjacent pitches:

Yitl _p, 1<i<m-—1 (7)
Yi

where D; is a constant. The tuple can be written as:

m—1

/\ (yi+1 - D)) 8)

i=1 i
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Actually people also have a general preference on durations, which means
we can define unstable elements for a duration structure similar to defining
unstable elements in an octave. Then the uniqueness of the representation can
be guaranteed. The preference of duration structure is not as obvious as that of
a scale, and needs further investigation.

Example 3 The sequences of durations (measured in second) {}L, ;, }L, i, 2,

1} and {%, 1, ;, g, 4, 2} are identified the same, and Reduce returns {1, 2, 1,

3, 8, 4} for them.

Adding duration factor into the representation, we get a two-dimensional de-
scription of a melody, {(n1,d1), (n2,d2), -+, (Nm, dmn)}, which is unique in gen-
eral.

3.3 Conclusion

Melody consists of two classes of constraints: local constraints and global con-
straints. Obviously the new representation is more compact, while the correctness
and uniqueness are guaranteed. The major operation in melody retrieval is the
substring matching, which we can adapt techniques from bioinformatics.

Music is one of the most beautiful and also complex phenomenon in our world.
A delicate model of the melody should capture diverse features. Besides the
crucial factors in the melody, our model captures the principle of diatonic music.
We prove that it is applicable in general, i.e., we have a unique representation
for a fixed melody.

From psychological point of view, we can explain our model as follows:
through thousands of years of music development, people have built up a general
preference or rules to create and appreciate the music. Harmonic music is usually
taken as that obeys these rules. Although notes in an octave are equally spaced
into 12 parts, in fact people don’t treat them equally. Some notes are taken as
unstable elements. Our algorithm Reduce is to find an assignment with the least
unstable elements, which is very similar to people’s cognition procedure, “... the
unstable element was itself poorly remembered” [3].

4 Experimental Results

Our Database is a collection (more than 100) of popular songs from different
countries, and a short piece (consisting of k notes) of melody can be looked as
a query. First, after analyzing scores made by musicians we figure out a rough
preference about scale notes (Fig. 4).

Our algorithm Reduce and Weight aim at generating a unique representation
for a piece of melody. The main concern is whether or not this representation is
the same as that translated by musicians, which we call the correctness of our
translation. In the following tables, we consider these algorithms:

— Reduce: generates melody’s representation by counting the number of unsta-
ble elements.
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>

Fig. 4. The preference of scale notes

Series 1: calculate by counting the number of each note

Series 2: calculate by accumulating duration of the note

Scale notes

325

— Weight: based on the general note-preference table (Fig. 4), returns the most
stable representation.

— Reduce+ Weight: use Reduce to generate some candidates first, then choose
the most stable one from these candidates by Weight.
— The second candidate: if the first candidate returned by Reduce+ Weight is
wrong, then we consider the second candidate as the correct representation.
The experiments show that, after choosing the second candidate, correctness

can be guaranteed.

Table 1: Correctness of unique representation for songs

Reduce

Weight

Reduce+Weight

61.2%

80.6%

100.0%

Table 2: Correctness of unique representation for queries

Alg. Reduce + The second
k Reduce Weight Weight candidate

k>3 13.3% 59.6% 76.6% 99.5%

k>5 14.4% 61.2% 78.7% 100.0%
k>7 17.9% 62.9% 81.4% 100.0%
k>9 22.1% 63.5% 83.9% 100.0%
k>11 32.5% 65.5% 87.5% 100.0%
k>13 38.5% 65.5% 96.2% 100.0%

Fig. 5. The correctness of translation algorithms
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Table 1, the correctness for translating songs, indicates that the correctness
can be guaranteed if we combine Reduce and Weight. Table 2 is for the translation
of query which is much harder to get a unique and correct representation. We
find that, the longer the query is, the better the algorithm performs. It’s better
to let k > 7. The duration representation can be found in the similar way, just
need to figure out the unstable duration elements.

5 Application and Future Work

For last several decades content-based retrieval has been explored in many dif-
ferent forms of media. Large volumes of music are now available and stored in
MIDI or MP3 format. A nature way of querying songs is by humming or singing
a piece of melody. Much research [6] of extracting pitches from MIDI or other
audio files have been done in recent years, and pitches representing the main
melody in polyphonic music can be retrieved and handled also [4,5,7].

In current music retrieval systems, such as SEMEX, MELDEX, Pollastri(99),
the melody is represented by contour-based string. Due to the property of trans-
position invariant, storing and comparing absolute pitches is meaningless, but a
coarser melodic contour description is more important to listeners in determin-
ing similarity. The U D S is a 3-level contour representation. Similarly, 5-level
and 7-level contour representations [19] have better performance in searching,
but need to store more information. Another approach is to store the intervals
between pitches [13], e.g., transform C D F D D A into 2 5 -2 0 7. The query
becomes the substring matching problem [2,6], which we can adapt techniques
from bioinformatics—DNA and protein sequence matching. In [12], suffix-trie is
proposed to store and index music data.

However, the above two representations didn’t consider global constraints.
For example, {FGAB} and {CDFB} can only be translated into {4567} and
{1247} respectively, by our method. But their contour-based strings are same,
ie., UUUU.

The interval-based representation is not efficient in searching, since it will
have many wrong entries, for example, { CDECDEFB...} and {FGAFGABG...}
are different melodies but have the same intervals for first six notes, 2 2 -4 2 2.
The system can not tell the difference between two melodies on the first 6 notes.
But our algorithms generate different sequences, {12312347} and {45645675}
respectively, and enable us to distinguish them immediately. Since we consider
the global constraint in pitches, a melody is translated into more specialized
string. Because the global information has been encoded into every number, we
can tell that the two pieces of melody are under very different contexts while
comparing their first numbers 1 and 4, i.e., the first pitches(1,4) take the roles of
the first element and fourth element in the scale, respectively. Therefore, though
the two sequences have similar contours, they should not be considered as a
match.

In contrast to contour-based and interval-based methods, our constraint-
based representation takes global constraints into account, based on the fact
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that the pitches chosen to compose harmonic music are under a tonal (global)
constraint. In other words, contour-based and interval-based approaches only
consider the relation between two adjacent pitches, while our constraint-based
approach considers the relation among all the pitches in a melody. By calculating
canonical form of melody constraints, we can represent music simply, without
losing preciseness and query efficiency. This representation also provides us a tool
for further investigation on music. For example, the key numbers (the elements
in the scale that a melody focuses on) of a melody can be easily figured out
by their usage frequency and the song’s ending note. We find that the music
with major tune usually focuses on 1 3 5, while minor tune on 2 4 6. Classic
Chinese music only uses 5 notes as a scale. Classic Russian music contains many
4% and 57%.

The third approach is to transform melody into time-series data[20], where
the notes are reduced by subtracting the average of the piece. However, the
average varies, especially when some notes in the piece are missing or the length
of piece changes. On the contrary, our approach can handle the above problems
very well: as long as the context hasn’t been changed (usually means a different
melody if it changes), the change on the piece will not affect the translation of
the remaining notes.

The future work includes: 1. detecting the change of tonal context in a song,
and separate the input properly. 2. define a duration structure (similar to the
scale structure) and make a unique 2-dimension representation for melodies. 3.
design a new query mechanism for music data: instead of the traditional method,
dynamic programming, we are considering a memory-reduced approach. Taking
full advantages of 2-dimension representation, the memory-reduced approach is
expected to improve the query process on both efficiency and accuracy.

6 Conclusion

The idea in this paper is somehow similar to some pitch spelling algorithms. For
instance, Longuet-Higgins’s algorithm [14] computed the value of ”sharpness”
for each input note, then tried to spell notes so that they are as close as possible
to the local tonic on the stave notation. In this paper, we not only provide a
much simpler processing algorithm by symbolizing notes with proper numbers
and applying constraint solving techniques, but also prove that uniqueness of
this representation can be guaranteed generally, even for a short piece of the
whole melody. Additionally, we discuss some issues in the application of this
method in melody retrieval, and propose several feasible solutions.

To make a more delicate model to describe melody, we need to consider some
other factors: timbre, beat, stress of pitches, etc. We expect to extend our model
with these features and build a practical and efficient music database system.
Tonal context is only one of the constraints in popular music. Our future in-
vestigation also includes using mathematical modelling approach to study other
constraints in harmonic context.
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Abstract. In this paper, two related subjects are discussed: musical segmenta-
tion and the representation of its results in a particular XML encoding, namely
MX. About segmentation, there is a comprehensive discussion of the main
ideas and the employed operators to implement it. Besides, in this paper we de-
scribe the principles of our music XML format.

Introduction

This paper represents the results recently obtained at LIM (Musical Informatics Labo-
ratory, State University of Milan) in the area of musical computer science. In particu-
lar, the document is focused on the automatic analysis of musical works in order to
recognize and extract musical objects. Our purpose is to encode both music informa-
tion and corresponding meta-data in a unique data structure. From this point of view,
XML provides an effective way to represent musical information at different levels of
abstraction. In the format we propose, namely MX, it is possible to correlate nota-
tional symbols as well as audio fragments, and printed scores as well as performance
files. Our encoding format is particularly suitable to represent information coming
from a manual or automatic segmentation process. Thanks to its multi-layer structure,
themes and other musical objects can be referred not only to organized symbols in
score, but also to audio performances and printed documents. XML encoding and
segmentation will be the main subjects of the following discussion.

XML and Music Information

XML provides indeed an innovative way to represent information. The purpose of our
efforts is to benefit by XML in order to generate a complete description of musical
communication. From this point of view, XML presents a number of remarkable fea-
tures:

o Intelligibility: compared to other encoding formats, a markup language is more
intelligible. Thanks to the tag mechanism, the receiver of music communication
(both a computer user and a musician) can easily retrieve information. A specific
software application is not required, as information is encoded in plain text format.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 330-346, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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e Implementability: musical applications using XML are implementable. A num-
ber of XML-based software were developed, both to represent and to manipulate
music information. Possible manipulations include not only simple editing but
also meta-data extraction and segmentation.

e Extensibility: an XML format can be extended to represent data, meta-data and
layers previously ignored. Dealing with a dynamic field such as music production,
we can not neglect possible future evolutions: for example, new notational sym-
bols in score or new levels of abstraction in multimedia communication.

e Hierarchical structure: music information is strongly structured. A music piece
is made of one or more pages, each one containing one or more staff groups, each
one containing one or more staves and so on... (parts on a staff, voices in a part,
beats for a voice, chords in a beat, notes in a chord). This example shows a hierar-
chical structure, which can be reflected and properly represented by XML.

Thus, XML is an effective way to describe music information. Nowadays, there is a
number of good dialects to encode music by means of XML: MusicXML, MusiXML,
MusiCat, MEI, MDL etc. (see [11] for a thorough discussion). In particular, we have
at least two good reasons to mention MusicXML by Michael Good — Recordare. First,
it can be considered a good and comprehensive way to represent symbolic informa-
tion. As a consequence, MusicXML was integrated in a number of commercial pro-
grams. Among them, it’s worthwhile to cite one of the leading applications for music
notation: Coda Music Finale. And another advantage of MusicXML is represented
just by its popularity in the field of music software.

We developed a new XML-based format, called MX. Our approach is different
from the aforementioned ones thanks to the following key features: the multi-layer
structure for music information and the concept of space-time construct.

In our opinion, musical information can be (and should be) structured by using a
layer subdivision model, as shown in Fig. 1. Each layer is specific to a different de-
gree of abstraction in music information. In our proposal for a common and exhaus-
tive format, we distinguish among General, Structural, Music Logic,
Graphic/Notational, Performance and Audio layers (see Figure 1a). For example, Mu-
sicXML could be integrated in the more comprehensive MX encoding to implement
the Logical Organized Symbols layer, that is symbolic information in score (notes,
rests, articulations,...); whereas other common file types can be linked to represent
other layers: TIFF for the Notational layer, MP3 and WAV for the Audio layer and so
on. There is a good coverage of the matter in [11].

Considering music structure as multi-layered, we need a sort of glue to keep to-
gether the heterogeneous contributions. Accordingly, we introduced the concept of
spine. Spine is a structure that relates time and spatial information (see Figure 2),
where measurement units are expressed in relative format. Through such a mapping,
it is possible to fix some point in a layer instance (e.g. Notational) and search the cor-
responding point in another one (e.g. Performance or Audio). Later in this document,
a complete example is provided.

Currently, MX is undergoing the IEEE standardization process, as described in [1]:
Recommended Practice for the “Definition of a Commonly Acceptable Musical Ap-
plication Using the XML Language” (IEEE SA 1599, PAR approval date
09/27/2001).
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Fig. 1 — (a) Music information layers and (b) relations among them

Fig. 2 — Spine: relationships between Notational and Performance/Audio layer
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A Brief Comparison Among MX and Other Formats

As mentioned before, we know that some of the basic concepts related to MX could
be considered not completely original. As an example, we cited other XML-based
formats to encode music information, such as MusicXML and MEI. As regards this
matter, MX is original thanks to its richness of contents. In fact, most XML-based
codings aim at the representation of only one layer or a small subset of the layers
listed before, whereas MX tries to depict music in all its aspects, logical as well as
structural, aural as well as graphical.

Another interesting format to describe multimedia information is MPEG-7 , for-
mally named “Multimedia Content Description Interface”. Among its noteworthy fea-
tures, the following are particularly close to our goals:

e The possibility to support a wide range of formats and file types: still pictures,
graphics, 3D models, audio, speech, video, and composite information
e The presence of audiovisual description tools, pointing out the metadata ele-
ments, their structure and relationships in order to create descriptions which
should allow effective and efficient access to multimedia content.
e The fact that the provided description is independent on the ways the described
content is coded or stored.
However, MX purposes substantially differ from the MPEG-7 ones. In fact, the latter
considers general multimedia information, whereas MX supports multimedia aspects
of musical information. In other words, our format doesn’t integrate graphics, audio
or video elements as a part of a multimedia presentation, but as peculiar descriptions
of music content. In this sense, we can say that MX is more specific about musical
field, and music score (in its different aspects) remains the central point of our view.
Besides, MX provides all the advantages of a plain XML coding we listed in the be-
ginning of this paper. Providing a format easy to be read, modified and saved even by
very common software tools is considered a peculiar aspect of our efforts, above all in
a moment when the scientific and technological community is divided about problems
such as network sharing, copyright, and open source solutions.

Segmentation

After a discussion about the key aspects of MX, let’s consider the second matter of
the paper. Segmentation implies recognizing and extracting main musical contents.
This evaluation can be performed involving either a score or an audio recording. The
two approaches are usually referred to as notational and audio segmentation, and are
wrongly considered independent. Studies on relationships between both representa-
tions are currently in progress: the purpose is to reduce the distance between the for-
mer and the latter, proposing integrated-analysis techniques on audio and notational
layer.

The target of segmentation is, at first, the aggregation of significant groups of ele-
ments: melody, thythm or harmony patterns, eventually combined. The next step is
the analysis and extraction of music objects, i.e. those parts of a piece characterized
by common features. The meaning of the locution “common features” is too general,
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but soon it will become clear. As mentioned before, musical language is very rich and
complex, and information can be conveyed at different levels of abstraction. So, an
example of segmentation at notational level could be: “Let’s consider all the notes
carrying a staccato articulation symbol”. This could represent a form of segmentation,
but really poor from a musicological point of view. Another type of interrogation
could be the following: “Let’s take into consideration all the sounds emitted by horns
in an orchestra score”. Now segmentation could occur either at audio or at notational
level, and would have its own musical meaning, indeed. But in the former case it
would be a very hard task to extract the horn part from an orchestral tessitura;' on the
contrary, considering notation, the problem would become even trivial. The question
is: among all the possible contents we can search for in music, what is really relevant?
What do we expect to determine?

Our approach is trying to partition music in order to recognize themes and other
important recurrent musical objects. Our search is oriented toward generative material
extraction from scores, including notation, phrasing and, at last, semantics. And we
would like to reach this goal by the automatic process of segmentation we will briefly
introduce in the following sections.

This computer-based process requires to pay a great attention to the correct evalua-
tion of results. For instance, a strongly repetitive sequence of notes (pitches and
rhythmic values) could highlight an important musical figure, such as a theme, as well
as an irrelevant accompaniment.

In the structure depicted in Figure 1b, the starting point of our computations is rep-
resented by score or performance file formats, such as NIFF, MIDI, and MX itself.
These files are parsed by our application software, namely Theme Finder, and trans-
formed into a common notational encoding. Then, analysis process can begin and the
corresponding results are finally written into an MX file. In the next section, our seg-
mentation process and employed techniques will be detailed.

The Concept of Musical Object

We can refer to a “musical object” as every type of structured information in any mu-
sical language. As mentioned before, our purpose is the extraction of thematic ele-
ments. Themes and musical objects are formalizations of general linguistic concepts,
thus the risk is to introduce sensitive restrictions based on aesthetic, historical and
formal criteria.

Even at basic symbolic level, musical language has a multidimensional syntax,
where an interweaving of rhythm, melody and harmony can be found. The musical
alphabet is composed by a combination of at least two data for each symbol. The most
atomic sound element, called the note, joins a sound pitch (frequency) to a rhythmic
value (time duration). Usually, musical alphabet is more complicated: for instance, at
rhythmic level not only durations but also accents play an important role. And, in or-
der to have a more complete characterization of elementary information, we should
also consider the loudness of note sound, and the timbre of the playing instrument .

! This is the problem usually referred to as demixing. Many studied about this matter are cur-
rently in progress, also at LIM.
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However, a simplification of the model by considering only rhythm, melody and
harmony dimensions can be sufficient. In fact, mental interpretation process doesn't
force us to distinguish different instruments (even if it actually does): for instance,
music themes are recognized even if they are split on different voices. And loudness
is never related to a single language particle but to more complex expressive struc-
tures .

Each melodic line, or real voice, is made of notes and is decomposable in two di-
mensions immediately perceived by the listener. These dimensions are the rhythmi-
cal-melodic character (horizontal dimension) and the harmonic character (vertical di-
mension). The latter aspect is not referred to a single melody, but has to be evaluated
together with other contemporaneous melodic lines. This originates the almost inde-
pendent dimension of tonal functions.

The dimensional complexity just described, even if reduced and simplified, makes
musical language harder to be formalized than other natural languages. Besides, only
a few elementary harmonic patterns (such as tonic-subdominant-dominant-tonic),
some melodic movements (e.g. sensible-root), and some rhythmical punctuation fea-
tures (pauses, long-duration notes,...) apparently keep a unique definition or a com-
monly accepted meaning in all historical ages and cultures.

The main problem we have to deal with is the fact that a musical object is recog-
nized also in presence of a slightly different information flow. Variation (in the form
of embellishment, transposition, retrogradation, and so on...) is probably the most
important method used by composers to develop music contents, and it can not be ig-
nored. Thus, our pattern matching techniques not only will take into consideration lit-
eral repetitions, but also a number of conceivable variations and adjustments.

Of course, automatic segmentation is a difficult task to perform. At the moment,
human intervention, even if not required, is still desirable. The supposed music
themes must undergo a hand-made musicological evaluation, finalized to recognize
their expected relevance and their completeness. An automatic process could extract a
musical theme which is too long, or too short, or simply insignificant. That’s why a
human feedback is still required in order to obtain high-quality results.

Introduction to Musical Operators

Now it should be clear that our goal is the automatic recognition of musical objects,
finalized to their representation in a commonly accepted standard format.

In order to find out musical objects through a computer system, a number of musi-
cal operators must be defined. Musical operators are an algorithmic tool-set able to
identify and report various types of musical objects.

Experience shows that limiting analysis to a single layer would produce a poorly
meaningful segmentation. That’s why a great effort was done to design and imple-
ment data structures and algorithms suitable to multi-layer analysis. In particular, the
newest version of our software, Theme Finder 3.0, is able to recognize and automati-
cally extract musical objects using overall information in an integrated way.

As mentioned before, we consider essentially three layers: melody, rhythm and
harmony. To each layer corresponds a subset of specific operators. The melodic,
rhythmic, and harmonic operators we conceived are able to produce compatible and
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complementary results, even if they are very different in meaning and operating fash-
ion.

Keeping the computational complexity fair should be one of the purpose of any
implementation. To achieve this goal, our integrated analysis employs a "nearly di-
agonal" approach: computations on different layers occur in different moments, but
the overall outcome is produced using all available information. Besides, during the
analysis process, the extracted information “flows” among the levels, thus working as
a guide for the following musical operators.

Unfortunately, in this short paper it is impossible to list all the operators with their
algorithms, functions and structures. [7] and [12] cover this topic in detail. Here we
will describe only their general principles and their main functionalities.

Redundancies and variated repetitions are recognized by applying a pattern match-
ing technique. In particular, most operators consider two given sequences of notes,
each one containing n symbols, and calculate a vector for each sequence. Of course,
the contents of the vector depend on the type of operator being applied. For instance,
a melodic operator is interested in pitch evaluation; thus, the vector elements will con-
tain numbers that mathematically describe the pitch information. Then, the contents of
the vectors are compared, and once again the way of matching is due to the specific
operator. As a result, an error vector is generated. In a certain sense, the error vector
measures the distance between two candidate musical objects. If all its components
are null, then there is a perfect matching (according to that particular operator); if not,
we must introduce a less rigid metrics than a simple binary “matched/unmatched”
logic. To evaluate properly varied recurrences, very common phenomena in music
compositions, a concept of tolerance must be introduced in the process of analysis.

Rhythmic/Structural Operators

This first class of operators focuses on rhythmic analysis. As a matter of fact, rhyth-
mic patterns can be considered a way to describe musical objects.

When talking about rhythm, usually we think about durations. Of course, note (and
rest) lengths represent an important aspect of rhythm. As a consequence, one of the
key features of our operator is the length matching.

But there is another aspect we must deal with: the accent arrangement. The match-
ing between two rhythmic objects cannot ignore also the congruence of accents. An
accent is a “conceptual reference” of a perceptive feature; it can explain the “rhythmic
tension” a note assumes due to its position in bar.

Notes can be grouped into equivalence classes, depending on note position in bar,
beat (strong time, stasis, pulse) and upbeat (weak time, impulse) of bar, regular or ir-
regular groups, syncopations and so on... Starting from score information, it is possi-
ble to use a simple automaton to assign rhythmic accents to each note in a melody. A
possible implementation is discussed in [7].

Before performing an automatic comparison of fragments, our operator weights
how much the position in bar is discriminating for the algorithm.

The parsing of rhythmic dimension has the advantage of being performed in a lin-
ear time cost complexity. Furthermore, the mathematical model is isomorphic to rela-
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tive musical theory, because music division is based on mathematical rules. Thus, we
can affirm that the theory is consistent.

In conclusion, two fragments will be considered completely equivalent from a
rhythmic point of view only if both duration and accent equivalence is found. In our
implementation, these two comparisons are unified under a single rhythmic/structural
operator.

Melodic Operators

Also melody can be investigated by using pattern matching techniques. In this case,
variations and their relationships with the original fragment have a particular impor-
tance. The way musical sequences are revised ranges from a simple reintroduction of
the original phrase in a new tonality to complex counterpoint devices.

Thanks to the melodic operators we introduced, we are able to recognize musical
modifications of four types:

e Transposition (real and tonal)

e Inversion (real and tonal)

e Retrogradation

e any combination of the preceding operators.

Transposition implies moving a note or collection of notes up or down in pitch by a
constant interval (real transposition) or by a constant number of grades (tonal transpo-
sition). The inversion of a given melody is the melody turned upside-down. For
instance, where the original melody has a rising third, the inverted melody presents a
falling third; once again, intervals can undergo a real inversion (e.g., a rising major
third becomes a falling major third) or a tonal one (e.g., instead of moving two grades
up, melody falls two grades down). Retrogradation is the movement in the opposite
sense: the last note of the original sequence becomes the first note in the varied one,
and so on...

In order to apply melodic operators, a formal model of musical scale must be pro-
vided. As mentioned before, there are two distinct ways to measure pitches, and there-
fore to evaluate distance between notes:

e a method based on chromatic distance, i.e. on half-tones; this technique is insen-
sitive to the tonal context.

e another based on diatonic distance, i.e. on grades of a scale; this method consid-
ers the actual tonality.

In order to implement both real and tonal operators, we need both the enumerative

systems: one to calculate the real distance, another to calculate the tonal distance (see

[4] and [12] for a detailed discussion).

Melody is a sequence of pitches, comparison is performed on this succession. Let’s
notice that there is a perfect informative equivalence between a description of abso-
lute pitches and a sequence of melodic interval, where only the first note is eventually
described by its absolute pitch whereas the following are identified by the distance
from the preceding one. The latter represents a differential approach, the one we
choose in our implementation for the following reasons:
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1. Human ear naturally evaluates pitch variation between notes instead of absolute
frequency of each note. Most listeners recognize a melodic pattern by matching
pitch sequential differences (as well as rhythm, of course).

2. In our implementation, absolute values are not important to determine recur-
rences and variations. This approach allows to code only differential informa-
tion, saving hardware and computational resources: for instance, a n-notes se-
quence can be represented by a (n-1)-items vector.

Harmonic Operators

Harmonic approach completed our analysis system at semantic-contextual level. Me-
lodic and rhythmic/structural operators highlight good local solutions, but they can
not provide a structural cognition of the musical meta-language ruling phraseological
generation. The aforementioned operators can be used for a syntactic analysis of mu-
sical language, but harmony evaluation is a powerful instrument to identify sections
and phrases within the composition plan. In this sense, harmony analysis is a helpful
cognitive tool for understanding phrase construction and for limiting its scope. Com-
pared to melodic and rhythmic/structural operators, harmonic operators work at a
higher level of abstraction, while discovering a deeper structure.

The following operators work serially in order to perform the desired analysis.

The first harmonic operator is Verticalization, used to identify the temporal occur-
rence of a sound event. It is essentially a “selective” function, with a domain defined
by all the notes in the score. This function groups notes in chords. Verticalization op-
erator is able to distinguish and manage redundant sounds that harmonic analysis
should not consider.

The second harmonic operator is called Tonal Function Recognition. This operator
evaluates the chord passed as argument, and return a symbol of musical meta-
language [17]. Its purpose is not only of recognizing the grade of the scale where the
chord is built, but also of providing a musical explanation of the chord function. The
final goal of TFR operator is the reduction of a whole set of notes (corresponding to
single chords) in a symbol belonging to one of three classes: Tonic, Dominant or
Subdominant. These classes correspond to the key harmonic regions in a musical
piece. A further symbol of indefiniteness is provided, but it should remain highly im-
probable.

The following harmonic operator is referred to as Harmonic Cadence. Its goal is
reducing the hard work of locating musical cadences to a series of simple logical for-
mula. This operator assigns Boolean values to each possible chord sequence, in order
to determine which chords may belong to a harmonic cadence. Thanks to TFR opera-
tor, now we can deal with every chord (that is a set of notes) as a single symbol in a
very limited alphabet, so the task of Harmonic Cadence operator is simpler.

Finally, the Harmonic Redundancy operator provides an easy way to collapse re-
dundant information.
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Segmentation and MX Encoding: A Case Study

In order to show a practical result of our studies and implementations, a short example
of MX encoding and segmentation is now provided.

The piece taken into consideration is a two-voices composition by J. S. Bach: In-
vention #4 BWV775. Due to the lack of space, only a short part of the whole piece
can be shown.

In this example, we report the MX coding of musical contents, together with a
number of other related representations. In particular, notational data can be retrieved
from MX, whereas the graphical aspect of score is visible in TIFF format, its per-
formance information is provided by MIDI layout, and the audio layer is represented
by the corresponding waveform.

The example we give can be divided into two parts. In the former we want to un-
derline the first key aspect of MX code: the “glue” function among different levels
provided by the spine layer. This layer is situated inside <logic> tags. The latter
part shows the effects of a possible segmentation and the corresponding MX represen-
tation. Within MX encoding, this part is marked by <structural> tags.

As regards the first section of the example, the one without segmentation, there we
decided to include also the logical description of the first five score bars. In this way,
the reader can have an idea of how score is encoded in MX, with a particular attention
to chords and notes. Such information is embraced by <los> tags.

Some comments about pitch encoding, a new characteristic of MX 1.4. Pitch in-
formation is no more similar to NIFF one, that is relative to staff properties and re-
lated to the appearance in the printed score; nor we decided to move to an absolute
but poor MIDI-like notation, considering only the frequency of notes and not their
real notation inside the score. Our approach is more complex than the two previously
listed, but also richer, and it provides a way to code both the absolute notation (the
one which produces the physical sound) and the typographical aspect of notes. These
aspects can be guessed through a careful analysis of <notehead> contents.

Besides, in order to present shortly the key features of our proposal, in the follow-
ing example we highlighted also the references between our spine and a possible
TIFF, MIDI and WAV file. These elements can be found inside <notational>,
<performance> and <audio> tags.

The current MX version is 1.4, and the presented piece of XML file follows such
standard.
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Fig. 3 — Notational layer: TIFF representation for Invention #4
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Fig. 5 — Audio layer: waveform representation for Invention #4

MX encoding of the first 5 bars of the piece, without segmentation:

<mx>
<general>
<description>
<work title>Zweistimmige Inventionen</work title>
<movement_ title>Inventio #4</movement title>
<movement number>BWV 774</movement title>
<genre>Baroque counterpoint</genre>
<author>J.S. Bach</author>
</description>
</general>
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<logic>
<spine>

<event id="e0" timing="0" hpos="0"/>
<event id="vl 0" timing="0" hpos="110"/>
<event id="vl 1" timing="256" hpos="300"/>
<event id="vl 2" timing="256" hpos="300"/>
<event id="vl 3" timing="256" hpos="300"/>
<event id="vl 4" timing="256" hpos="300"/>
<event id="vl 5" timing="256" hpos="300"/>
<event id="vl 6" timing="256" hpos="450"/>
<event id="vl 7" timing="256" hpos="300"/>
<event id="vl 8" timing="256" hpos="300"/>
<event id="vl 9" timing="256" hpos="300"/>

<event id="vl 10" timing="256" hpos="300"/>
<event id="vl 11" timing="256" hpos="300"/>
<event id="vl 12" timing="256" hpos="400"/>
<event id="v2 0" timing="0" hpos="0"/>
<event id="v2 1" timing="256" hpos="300"/>
<event id="vl 13" timing="256" hpos="300"/>
<event id="v2 2" timing="0" hpos="0"/>
<event id="v2 3" timing="256" hpos="300"/>
<event id="vl 14" timing="256" hpos="350"/>
<event id="v2 4" timing="0" hpos="0"/>
<event 1id="v2 5" timing="256" hpos="300"/>
<event id="vl 15" timing="256" hpos="600"/>
<event id="v2 6" timing="0" hpos="0"/>
<event id="v2 7" timing="256" hpos="300"/>
<event id="vl 16" timing="256" hpos="350"/>
<event id="v2 8" timing="0" hpos="0"/>
<event id="v2 9" timing="256" hpos="300"/>
<event id="vl 17" timing="256" hpos="350"/>
<event id="v2 10" timing="0" hpos="0"/>
<event id="v2 11" timing="256" hpos="300"/>
<event id="vl 18" timing="256" hpos="500"/>
<event id="v2 12" timing="0" hpos="0"/>
<event id="vl 19" timing="256" hpos="200"/>
<event id="vl 20" timing="256" hpos="200"/>
<event id="v2 13" timing="0" hpos="0"/>
<event id="vl 21" timing="256" hpos="200"/>
<event id="vl 22" timing="256" hpos="200"/>
<event id="v2 14" timing="0" hpos="0"/>
<event id="vl 23" timing="256" hpos="200"/>

</spine>

<los>

<staff list>
<staff id="staff(0" ossia="no" line number="5">
<clef type="G" event ref="e(0" staff step="2"
octave num="0"/>
</staff>
<staff id="staffl" ossia="no" linenumber="5">
<clef type="F" event ref="e(0" staff step="6"
octave num="0"/>
</staff>
</staff list>
<part id="partQ" dfstaff ref="staff0">
<voice list>
<voice_item id="voiceO"/>
</voice list>
<measure number="1">
<voice ref="voiceO" ossia="no">

341
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<chord event_ref="vl 0" cue="no" grace="no">
<notehead staff ref="staff0">
<pitch step="D" octave="5"/>
<duration den="16" num="1"/>
</notehead>
</chord>
<chord event ref="vl 1" cue="no" grace="no">
<notehead staff ref="staff0">
<pitch step="E" octave="5"/>
<duration den="16" num="1"/>
</notehead>
</chord>
<chord event_ref="vl 2" cue="no" grace="no">
<notehead staff ref="staff0">
<pitch step="F" octave="5"/>
<duration den="16" num="1"/>
</notehead>
</chord>

</voice>
</measure>

</part>
<part id="partl" dfstaff ref="staffl">
<voice list>
<voice item id="voicel"/>
</voice list>
<measure number="3">
<voice ref="voicel" ossia="no">
<chord event ref="v2 0" cue="no" grace="no">
<notehead staff ref="staffl">
<pitch step="D" octave="4"/>
<duration den="16" num="1"/>
</notehead>
</chord>
<chord event ref="v2 1" cue="no" grace="no">
<notehead staff ref="staff0">
<pitch step="E" octave="4"/>
<duration den="16" num="1"/>
</notehead>
</chord>
<chord event ref="v2 2" cue="no" grace="no">
<notehead staff ref="staffl">
<pitch step="F" octave="5"/>
<duration den="16" num="1"/>
</notehead>
</chord>

</voice>
</measure>
</part>
</los>
<notational>
<graphic_instance file name="inventiod4.tif" format="TIFF"

spine_start ref="vl 0" spine_end ref="vl 23">
<part ref part id=""/>



<rights/>
</graphic_instance>

</notational>

<performance>

<performance instance file name="inventio4.mid"
spine_start ref="vl 0" spine end ref="vl 23">

<rights/>

<index time="0.00"
<index time="0.15"
<index time="0.30"
<index time="0.45"
<index time="0.60"
<index time="0.75"
<index time="0.90"
<index time="1.05"
<index time="1.20"
<index time="1.35"
<index time="1.50"
<index time="1.65"
<index time="1.80"
<index time="1.80"
<index time="1.95"
<index time="2.10"
<index time="2.10"
<index time="2.25"
<index time="2.40"
<index time="2.40"
<index time="2.55"
<index time="2.70"
<index time="2.70"
<index time="2.85"
<index time="3.00"
<index time="3.00"
<index time="3.15"
<index time="3.30"
<index time="3.30"
<index time="3.45"
<index time="3.60"
<index time="3.60"
<index time="3.75"
<index time="3.90"
<index time="3.90"
<index time="4.05"
<index time="4.20"
<index time="4.20"
<index time="4.35"

</clip>
</audio>

</mx>

<MIDI format="0">
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<MIDI_part_ref part_id="Piano" track="1" channel="1"/>

</MIDI>
<rights/>

</performance_instance>
</performance>
<audio>

<clip file name="inventio4.wav" format="PCM" duration="65.127"

encoding="WAV"

freq="44100" nbit="16"
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n_channel="2" spine start ref="vl 0" spine end ref="vl 23">
<part_ref part_id=""/>

measure="1"
measure="1"
measure="1"
measure="1"
measure="1"
measure="1"
measure="2"
measure="2"
measure="2"
measure="2"
measure="2"
measure="2"
measure="3"
measure="3"
measure="3"
measure="3"
measure="3"
measure="3"
measure="3"
measure="3"
measure="3"
measure="4"
measure="4"
measure="4"
measure="4"
measure="4"
measure="4"
measure="4"
measure="4"
measure="4"
measure="5"
measure="5"
measure="5"
measure="5"
measure="5"
measure="5"
measure="5"
measure="5"
measure="5"

beat="1"
beat="1"
beat="2"
beat="2"
beat="3"
beat="3"
beat="1"
beat="1"
beat="2"
beat="2"
beat="3"
beat="3"
beat="1"
beat="1"
beat="1"
beat="2"
beat="2"
beat="2"
beat="3"
beat="3"
beat="3"
beat="1"
beat="1"
beat="1"
beat="2"
beat="2"
beat="2"
beat="3"
beat="3"
beat="3"
beat="1"
beat="1"
beat="1"
beat="2"
beat="2"
beat="2"
beat="3"
beat="3"
beat="3"

event ref="vl 0"/>
event_ref="vl 1"/>
event ref="vl 2"/>
event ref="vl 3"/>
event ref="vl 4"/>
event_ref="vl 5"/>
event ref="vl 6"/>
event ref="vl1 7"/>
event ref="vl 8"/>
event_ref="vl_ 9"/>
event ref="vl 10"/>
event ref="vl 11"/>
event ref="vl 12"/>
event_ref="v2_0"/>
event ref="v2 1"/>
event ref="vl 13"/>
event ref="v2 2"/>
event_ref="v2_3"/>
event ref="vl 14"/>
event ref="v2 4"/>
event ref="v2 5"/>
event_ref="vl 15"/>
event ref="v2 6"/>
event ref="v2 7"/>
event ref="vl 16"/>
event ref="v2 8"/>
event ref="v2 9"/>
event ref="vl 17"/>
event ref="v2 10"/>
event ref="v2 11"/>
event ref="vl 18"/>
event ref="v2 12"/>
event ref="vl 19"/>
event ref="vl 20"/>
event ref="v2 13"/>
event ref="vl 21"/>
event ref="vl 22"/>
event_ref="v2 14"/>
event ref="vl 23"/>
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The same score, or the same MX file, can be processed in order to find repetitive mu-
sical patterns and themes, according to the previously described operators. For in-
stance, we can perform a segmentation based on the melodic operator of transposi-
tion. In this case, an automatic segmenter (with proper settings) or even a hand-made
analysis process could recognize the two occurrences shaded in Fig. 6.
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Fig. 6 — The shaded boxes contain the results of a possible segmentation

The new interesting part of the example is the one embraced by <structural>
tags. Let’s observe that the presence of a sub-element named <analysis> allows to
encode in a single file multiple analyses, such as for instance those coming from dif-
ferent segmentation processes with different parameters and/or operators. Inside the
single analysis, the format isolates a theme and lists all its occurrences, according to
its original or variated form. As usual, the presence of references to the spine (in par-
ticular by start ref and end ref attributes) is fundamental: this is the way
themes are mapped to the original score.

After taking segmentation into consideration, the resulting MX file would be
modified as follows:

<mx>
<general> .. </general>
<los> .. </los>

<structural>
<analysis>
<theme id="themeO">
<occurrence>

<thm spine ref end ref="vl 12" part ref="part0O"
start _ref="vl 0" voice ref="voice0"/>
</occurrence>
<occurrence>
<thm spine ref end ref="v2 12" part ref="partl"
start ref="v2 0" voice ref="voicel"/>
</occurrence>
</theme>

</analysis>
</structural>

</mx>
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Conclusion

In this paper we discussed two different aspects of music segmentation:

1. the capability to perform an automatic analysis process, based on flexible opera-
tors, appropriate data structures, and efficient algorithms;

2. the aptitude to represent the results of (either manual or automatic) segmentation
in a comprehensive file format, so that those results can be linked not only to no-
tational level but also to audio, performance, and graphic layers.

Our latest studies in the apparently independent fields of music XML and automatic

segmentation originated a very interesting common outcome: the representation of

music data and meta-data at any level of abstraction through MX, that revealed to be a

comprehensive and effective standard format.
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Abstract. In this paper we present an enhancement of edit distance
based music performance annotation. The annotation captures musical
expressivity not only in terms of timing deviations but also represents
e.g. spontaneous note ornamentation. To reduce the number of errors in
automatic performance annotation, some optimization is essential. We
have taken an evolutionary approach to optimize the parameter values
of cost functions of the edit distance. Automatic optimization is desir-
able since manual parameter tuning is unfeasible when more than a few
performances are taken into account. The validity of the optimized pa-
rameter settings is shown by assessing their error-percentage on a test
set.

1 Introduction

Although the use of the edit distance [7] is well known in the field of melodic
similarity [8,12], score following/automatic accompaniment [3,10] and perfor-
mance transcription [6,9], not much attention has been paid to its value for
the expressive analysis and annotation of musical performances. The optimal
alignment between score and performance does not only reveal timing devia-
tions of performed notes, but (depending on the set of edit operations) conveys
a much richer set of expressive variations, such as ornamentations, and frag-
mentations/consolidations. In the context of the ProMusic project® we are de-
veloping Tempo FExpress, a Case Based Reasoning system for applying tempo
transformations to audio recordings of solo performances of jazz melodies [5]. In
this system, we use the alignment information to automatically annotate perfor-
mances [1]. The performance annotations serve as example cases to transform
a performance for a given melody. As a result, the expressiveness of the trans-
formed performance is not restricted to timing variations, but it can also contain
for example ornamentations.

For a correct detection of phenomena such as ornamentations, fragmenta-
tions, and consolidations of notes using the edit distance, it is important to
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assign appropriate costs to each of the edit operations. Since it turned out to be
unfeasible to manually tune the costs to obtain correct annotations for a large
set of performances, we tried to find good costs using a genetic algorithm. In
this paper, we describe our experiments and results.

In section 2, we explain the idea of annotating performances by performance
events. We wil show how performance annotations can be constructured using
the edit distance algorithm, and motivate the chosen set of cost functions for
assessing the costs of the edit operations. In section 3, we report how the param-
eter values in the cost functions were estimated, using a genetic algorithm, and
evaluate the quality of the estimations. Conclusions are presented in section 4.

2 Performance Annotation

It has been widely acknowledged that human performances of musical material
are virtually always quite different from mechanical renderings of the music.
These differences (the musical expressivity) are thought to be vital for the aes-
thetic quality of the performance, and therefore it is worthwhile to have ways
of making explicit the quality and quantity of these differences. The majority of
research concerning musical expressivity is focused on the temporal, or dynamic
variations of the notes of the musical score as they are performed [2,4,11,13]. In
this context, the spontaneous insertions or deletions of notes by the performer
are often discarded as artifacts, or performance errors. This may be due to the
fact that most of this research is focused on the performance practice of classical
music, where the interpretation of notated music is rather strict. Contrastingly,
in jazz music performers often favor a more liberal interpretation of the score,
so that expressive variation is not limited to variations in timing of score notes,
but also comes in the form of e.g. deliberately inserted and deleted notes. Thus,
research concerning expressivity in jazz music should pay heed to these phenom-
ena and in addition to capturing the temporal/dynamical variations of score
notes, the musical behavior of the performer should be described in terms of
note insertions/deletion/ornamentations etcetera. One way to do this is to de-
fine these expressive phenomena as performance events, and then annotate the
performance with a sequence of such events.

In the next subsections, we propose a set of performance events to be used in
the performance annotation of saxophone jazz performances, we show how the
edit distance algorithm can be used to construct the annotation, and propose
cost functions to be used in the edit distance computation.

2.1 Choice of Performance Events

The decision which performance events to define is important, since they are in a
sense the ‘vocabulary’ we use to represent the musician’s performance behavior.
The set of performance events proposed here (which is a slight extension of the
one proposed in Arcos et. al. [1]), is chosen to reflect the variety of phenom-
ena that we have actually encountered in a set of saxophone jazz performances.
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Fig. 1. performance annotation of the first phrase of Once I Loved, played by a
saxophone at 220 bpm. The bars below denote the played notes (the bar lengths
are representative for the note durations). The annotation is the sequence of
performance events in the middle. ‘T’ is for transformation (of duration and
onset), ‘F’ for fragmentation, and ‘C’ for consolidation

Based on the fact that the phrases in our data set were played by a professional
musician and they were performed with the intention of giving a neutral inter-
pretation of the score, it may be thought that expressive deviations of the score
other than changing the timing or dynamics of the notes will occur only very in-
frequently, and that most of the performances can be represented by events that
just describe how the timing and duration of score notes was changed as they
were performed — i.e. transformation events. But listening to the performances
revealed that other types of events occurred frequently as well. For example,
some cases of note deletions and insertions were found. Apart from real inser-
tions of notes, that gave the impression of an elaboration of the melody (such
insertions occurred, but were rare), another type of insertion was found to occur
rather often: ornamentation. By ornamentation we refer to one or more very
short notes (typically about 100 or 200 ms.) that are usually a chromatic ap-
proach from below to the next score note. We have found such ornamentations to
consist of one, two or three notes. Furthermore, we observed that consolidation
(as described in the previous section) occurred in some performances. Occasion-
ally, we found cases of fragmentation. Other transformations, such as sequential
transposition (reversal of the temporal order of notes) were not encountered.

For illustration, figure 1 shows the annotation of a melodic phrase from the
song ‘Once I Loved’ (A.C. Jobim). The performer fragmented the third note into
two shorter notes, and in the repetition of triplet notes, there are two cases of
consolidations. The other notes were played as is, with a lesser or greater degree
of deviation in onset time and duration.

The kinds of events mentioned above can be visualized in a class hierarchy
(as in figure 2) to make explicit their characteristics. The core idea of a perfor-
mance event is that it relates the notes that are actually played by the performer
to the notes that are written in the score. As such, every event refers either to
one or more notes in the score, or to one or more notes in the performance,
or both. We can distinguish, within this general class of reference events, those
that refer to notes in the score and those that refer to elements in the perfor-
mance. Deletion events refer to notes of the score that are not present in the
performance (i.e. the notes that are not played), therefore they can be classified
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Reference
Score Reference Performance Reference
Deletion Correspondence Insertion

\ Consolidation\ \ Transformation\ \ Fragmentation\ \ Ornamentation\

Pitch— Duration- Onset-
Transformation:  Transformation: {Transformation

Fig. 2. A hierarchical representation of performance events for performance an-
notation. The unboxed names denote abstract classes; the boxed names denote
‘concrete’ classes that are used in the performance annotation. The dottedly
boxed names denote classes that are derived from the concrete classes

as score-reference events. Conversely, insertion events refer only to elements in
the performance (i.e. the notes that were added), so they form a subclass of
performance-reference events. Transformation, consolidation and fragmentation
events refer to elements from both the score and the performance and thus form
a shared subclass of score-reference and performance-reference events. We call
this class correspondence events.

The reference, score-reference, performance-reference and correspondence
classes are abstract classes that are just conceived to express the relationships
between concrete classes of events, and are not intended to be used directly in
the performance annotation. The concrete classes, that are used to construct the
performance annotation, are depicted in figure 2 with boxes. They are:

Insertion Represents the occurrence of a performed note that is not in the score

Deletion Represents the non-occurrence of a score note in the performance

Consolidation Represents the agglomeration of multiple score notes into a
single performed note

Fragmentation Represents the performance of a single score note as multiple
notes

Transformation Represents the change of nominal note features

Ornamentation Represents the insertion of one or several short notes to an-
ticipate another performed note

In the case of transformation, we are not only interested in the one-to-one cor-
respondence of performance elements to score elements itself, but rather in the
changes that are made to attribute values of score notes when they are trans-
formed into performance elements. Therefore, we view transformation events
as compositions of several transformations, e.g. pitch transformations, duration
transformations and onset transformations.



Evolutionary Optimization of Music Performance Annotation 351

2.2 Constructing Performance Annotations Using Edit Distance

Performance annotations, being sequences of performance events, can be treated
as a sequence of operations that tell you how to perform a written score, or
alternatively, how to transform a sequence of score notes into a sequence of per-
formed notes. As such, the relation between the performance annotation and the
concept of optimal alignment between score and performance becomes obvious.
When performance events are defined as edit operations, then computing the
edit distance between the score and the performance yields a sequence of edit
operations, from which the performance annotation is constructed.

One problematic aspect of defining the performance events as edit operations,
is the fact that the subclasses of transformation events (pitch transformations,
duration transformations and onset transformations), can occur simultaneously
(that is, they can refer to the same score and performance notes), whereas in
the edit distance, each sequence element is covered by exactly one operation.
Our solution is to have a single Transformation operation for the computation
of the alignment, as a rough identification of the expressivity. In a second stage,
after the alignment has been computed, the score and performance events cor-
responding to Transformation operations can be compared in more detail to
establish which of the pitch, duration, and onset transformation really occurred.
The corresponding classes are shown in figure 2 as dotted boxes.

The edit distance between a source and a target sequence is defined as the
minimum cost of transforming the source sequence into the target sequence us-
ing a fixed set of edit operations. This cost can be calculated using the follow-
ing recurrence equation, that defines the distance d,, , between two sequences
(a1, ag, ..., am) and (by,ba, ...,b,) (using insertion, deletion and replacement, the
standard set of edit operations):

difl,j + w(az’, @) (deletion)
di,j = min di,j—l + 'U)((Z), b]) (insertion)
di—l,j—l + UI(ai, b]) (replacement)

forall0 <i <mand 0 < j < n, where m is the length of the source sequence and
n is the length of the target sequence. The initial conditions for the recurrence
equation are:

di,O = di*l,j + w(ai7 @) (deletion)
dOJ - di,j*l + ’U.)(@, bj) (insertion)
d070 =0

The weight function w, defines the cost of operations, such that e.g. w(aq, )
returns the cost of deleting element a4 from the source sequence, and w(as, bs)
returns the cost of replacing element ag from the source sequence by the element
b5 of the target sequence.

For two sequences a and b, consisting of m and n elements respectively, the
values d; ; (with 0 <4 < m and 0 < j < n) are stored in an n +1 by m + 1
matrix. The value in the cell at the lower-right corner, d,, , is taken as the
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distance between a and b, that is, the minimal cost of transforming the sequence
(@gy ey @) into (b, ..., by,).

In our particular case, we define the following edit operations: insertion, dele-
tion, ornamentation, transformation, fragmentation, and consolidation. To use
these operations for score performance alignment, cost values must be assigned
to each of them. This is done by means of weight functions for each type of
operation (w in the recurrence equation).

2.3 The Cost Values

Ideally, the cost values for each type of operation will be such that the resulting
optimal alignment corresponds to an intuitive judgment of how the performance
aligns to the score (in practice, the subjectivity and ambiguity that is involved
in establishing this mapping by ear, turns out to be largely unproblematic). The
main factors that determine which of all the possible alignments between score
and performance is optimal, will be on the one hand the features of the note
elements that are involved in calculating the cost of applying an operation, and
on the other hand the relative costs of the operations with respect to each other.

In establishing which features of the compared note elements are considered
in the comparison, we have taken the choices made by Mongeau and Sankoff [8]
as a starting point. In addition to pitch and duration information (proposed by
Mongeau and Sankoff), we have decided to incorporate the difference in position
in the costs of the correspondence operations (transformation, consolidation and
fragmentation), because this turned out to improve the alignment in some cases.
One such case occurs when one note in a row of notes with the same pitch and
duration is omitted in the performance. Without taking into account positions,
the optimal alignment will delete an arbitrary note of the sequence, since the
deletions of each of these notes are equivalent based on pitch and duration in-
formation only. When position is taken into account, the remaining notes of the
performance will all be mapped to the closest notes in the score, so the deletion
operation will be performed on the score note that remains unmapped, which is
often the desired result.

It is important to note that when combining different features, like pitch,
duration and onset into a cost-value for an operation, the relative contribution
of each term is rather arbitrary. For example when the cost of transforming one
note into another would be defined as the difference in pitch plus the difference
in duration, the outcome depends on the units of measure for each feature. The
relative weight of duration and pitch is not the same when measured in seconds,
as when measured in beats. Similarly, pitch could be measured in frequency,
semitones, scale steps, etcetera. Therefore, we have chosen a parametrized ap-
proach, in which the relative contribution of each term in the weight function is
weighted by a constant parameter value.

The other aspect of designing cost-functions is the relative cost of each opera-
tion. After establishing the formula for calculating the weights of each operation,
it may be that some operations should be systematically preferred to others. This
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independence of costs can be achieved by multiplying the cost of each operation
by a factor and adding a constant.

The cost functions w for the edit operations are given below. The arguments
of the functions are elements from a sequence of score notes s, and a sequence
of performed notes p. P, D, and O are functions such that P(z) returns the
pitch (as a MIDI number) of a score note or performed note x, D(x) returns its
duration, and O(z) returns its onset time. Equations 1, 2, 3, 4, 5, 6 define the
costs of deletion, insertion, ornamentation, transformation, consolidation and
fragmentation, respectively.

w(si,0) = aa - D(s;) (1)
w(,pj) = a; - D(pj) (2)
B- lL:1 14+P@j+t) — P(pjsri—1) |+
WO.ps e prerat) = - Dol (pi+1) = P(pj+i-1)| 3
v Zl 0 p]+l
B [P(si) = Ppj)| +
w(si,py) = ai- | 5 | D(si) - Dlpy) | + )
5-10(s:) = O(p;) |
B30 | P(sixr) — Plps)| +
W(Si, .., Sit K, P5) = Qe+ | ~- | D(py) Zk o D(sive)| + (5)
5 10(s:) = O(py) |
B Zl 0 ‘7) (pJ-H)‘ +
W(Si,Pjy s Pi+L) = Qf * | 4 |D(s) Zl o D(pjv1)| + (6)

§-10(si) = O(py) |

The parameters 3,7, and § control the influence of pitch, duration, and onset,
respectively. o, oy, ao, 0, ¢, and oy are the parameters that scale the costs of
deletion, insertion, ornamentation, transformation, consolidation and fragmen-
tation, respectively.

The costs of transformation (4), consolidation (5), and fragmentation (6),
are principally constituted of the differences in pitch, duration and onset times
between the compared elements. In the case of one-to-many matching (frag-
mentation) or many-to-one (consolidation), the difference in pitch is calculated
as the sum of the differences between the pitch of the single element and the
pitches of the multiple elements. The difference in duration is computed between
the duration of the single element and the sum of the durations of the multiple
elements. The difference in onset is computed between the onset of the single
element and the onset of the onset of the first of the multiple elements. The
cost of deletion (1) and insertion (2)is determined by the duration of the deleted
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element. The cost of ornamentation (3) is determined by the pitch relation of the
ornamentation elements and the ornamented element (chromatically ascending
sequences are preferred), and the total duration of the ornamentation elements.

3 Experimentation

The introduction of the nine parameters in the cost functions comes with the
problem of finding appropriate values for those parameters. Although the edit
distance has some robustness (it aligns sequences reasonably well, even if bad
parameter values are chosen), it is difficult to bring the amount of annotation
errors down to a few percent. Manually tuning the parameters is possible for a
small set of performances, but this becomes unfeasible for larger sets (adjust-
ments that improve the annotation of one performance, worsened the annotation
of others). Surprisingly, our manually tuned settings hardly improved the accu-
racy of annotation with respect to random parameter settings when tested on
larger sets of performances. Therefore, we have employed a genetic algorithm to
obtain a good parameter setting. In this section we describe our experimentation
with the tuning of the parameters.

The idea of the evolutionary optimization of the parameter values is rather
simple: an array of the nine parameter values (one value for each parameter) can
be treated as a chromosome. The number of errors produced in the annotation
of a set of performances using that set of parameter values, is inversely related
to the fitness of the chromosome. By evolving an initial population of (random)
chromosomes through crossover, mutation and selection, we expect to find a set
of parameter values that minimizes the number of annotation errors, and thus
improves automatic performance annotation.

We are interested in two main questions. The first is whether it is possible
to find a parameter setting that works well in general. That is, can we expect a
parameter setting that worked well for a training set to perform well on unseen
performances? The second question is whether there is a single setting of pa-
rameter values that optimizes the annotations. It is also conceivable that good
annotations can be achieved by several different parameter settings.

3.1 Experiment Setup

We have run the genetic algorithm with two different (non-overlapping) training
sets, both containing twenty performances. These were (monophonic) saxophone
performances of eight different phrases from two jazz songs (Body and Soul, and
Once I Loved), performed at different tempos. For each of the performances,
the correct annotation was available. The fitness of the populations was assessed
using these annotations.

The fitness evaluation of a population (consisting of 20 chromosomes) on the
training set is a rather time consuming operation. Therefore, it can take a long
time before a good solution is obtained, starting the evolution with a randomly
initialized population. In an attempt to solve this problem, we initialized the



Evolutionary Optimization of Music Performance Annotation 355

population with solutions that were trained on the individual phrases of the
training set (which is a much faster procedure). Assuming that the solution
optimized for one phrase may in some cases work for other phrases, this speeds
up the time needed to find a good solution for the whole training set.

A new generation is generated from an old generation as follows: From the
old generation (consisting of N chromosomes), the k best chromosomes are se-
lected (where k is dependent on the distribution of the fitness across the popula-
tion); Then, N — k new chromosomes are created by a cross-over of the selected
chromosomes; The newly generated chromosomes are mutated (multiplying each
parameter value by a random value), and the N — k mutated chromosomes, to-
gether with the n (unchanged) chromosomes from the old generation, form the
new generation.

3.2 Fitness Calculation

The fitness of the chromosomes is calculated by counting the number of an-
notation errors using the parameter values in the chromosome. For example,
assume that the correct annotation of a melodic fragment is ‘T T C T, and the
annotation of that fragment obtained by using the parameter values of the chro-
mosome is ‘T T T D T’ (that is, a consolidation operation is confused with an
transformation and a deletion operation). The ‘C’ doesn’t match to an element
in the second sequence, and the ‘T’ and ‘D’ don’t match to elements in the first
sequence and thus three errors occur. To count the errors between the correct
and the predicted annotations (which are represented as sequences of symbols),
we use the edit distance (don’t confuse this use of the edit distance to compare
annotations with the use of the edit distance to generate annotations).

For a given set S of performances (for which the correct annotations are
known), we define the fitness of a chromosome ¢ as:

1

)= pie gy +1

where E(c, S) is the total number of errors in the predicted annotations for S
using the parameter values in c. The fitness function fit ranges from zero to one.
Obviously, a fitness value of one is the most desirable, since it corresponds to
zero annotation errors.

3.3 Results

For each of the two training sets, Tr1 and Tr2, the evolution algorithm was run
three times. The resulting parameter settings are shown in figure 3. Table 1
shows the number of annotation errors each of the parameter settings produced
on the training sets, and on a test set (a set of 35 performances, none of which
occurred in Trl or Tr2). The average number of annotation errors on the test
set is about 32 on a total of 875 annotation elements in the test set, an error-
percentage of 3.66%. This is only slightly higher than the error-percentages on
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Fig.3. Estimated parameter values for two different training sets (Trl and
Tr2). Three runs were done for each set (a, b, and c). The x-axis shows the nine
different parameters of the cost functions (see section 2.3). For each parameter
the values are shown for each run on both training sets

the training sets: 2,60% for Trl, and 2,37% for Tr2 (averaged over three runs),
and substantially lower than the average error-percentage of random parameter
settings on the test set, which is about 13,70%.

Trla Trlb Trlc Tr2a Tr2b Tr2c
Errors on Train 19 (3.89) 9 (1.84) 10 (2.05) 11 (2.30) 12 (2.51) 11 (2.30)
Errors on Test 19 (2.17) 26 (2.97) 30 (3.43) 19 (2.17) 32 (3.66) 65 (7.43)

Table 1. Annotation errors produced by the obtained solutions for three differ-
ent runs (denoted by the letters a, b, and ¢) on two different training sets (Trl
and Tr2) and a test set. The first row shows the number of errors on the set
that the solutions were trained on, and the corresponding percentages in paren-
theses (Trl contained 488 annotation elements in total, and Tr2 contained 479).
The second row shows the number of errors on the test set (875 elements), with
percentages in parentheses

Table 2 shows the pair-wise correlations of the values. As can be seen from
the cross-correlations in the table, the parameter settings did not all converge
to the same values. Nevertheless, there were some cases in which the parameters
were highly correlated. In particular the solutions found in runs Trla, and Tr2a
are highly similar (this can be easily verified by eye in figure 3. A rather strong
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correlation is also observed between the solutions found in Trlc and Tr2b, and
those in Trlb, and Tr2c. It is interesting that the correlated solutions were
obtained using non-overlapping sets of performances. This is evidence that the
solutions found are approximations of a single parameter setting that is valid
for the performances in both training sets. In the case of the solutions of Trla
and Tr2a, the approximated parameter setting may also have a more general
validity, since both solutions have a low error number of annotations on the test
set as well (see table 1).

Trla Trlb Trlc Tr2a Tr2b Tr2c
Trla 1.00 -0.32 -0.70 0.92 -0.32 -0.28
Trlb -0.32 1.00 0.17 -0.02 -0.33 0.68
Trlc -0.70 0.17 1.00 -0.61 0.76 0.07
Tr2a 0.92 -0.02 -0.61 1.00 -0.33 -0.12
Tr2b -0.32 -0.33 0.76 -0.33 1.00 -0.47
Tr2c -0.28 0.68 0.07 -0.12 -0.47 1.00

Table 2. Cross-correlations of the parameter values that were optimized using
two different training sets (Trl and Tr2), and three runs for each set (a, b, and ¢)

4 Conclusions and Future Work

We have presented a method to enhance the automatic annotation of music
performances. The annotation includes information about e.g. note ornamenta-
tions and deletions as part of the musical expressivity. To correctly detect such
phenomena, an evolutionary approach was chosen to optimize the parameter
values of cost functions, that were used in the (edit distance based) performance
annotation process.

Two main questions we have tried to answer is whether it is possible to find a
parameter setting that has a broader validity than just the set of performances it
was optimized for, and whether there is a single parameter setting that optimizes
the annotations. All solutions from different trials on two non-overlapping sets of
performances substantially improved the quality of annotation of a test set over
random parameter settings. Moreover, cross-correlations were found between
some parameter settings that were optimized for different training sets. This
suggests that they are approximations of a parameter setting that works well
for a larger group of performances. In general however, the solutions did not all
converge to a single set of parameter values.

In the future, we wish to extend the experiments to see whether the solutions
found converge to a limited range of parameter settings. And if so, we wish to
investigate how the distributions of values over the parameters relate to each
other (for example, do high «, values imply low v and § values and vice versa?).
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Abstract: - The design and development of large-scale repositories especially
of content types like music pose challenging problems. We believe such
databases should have exploratory interfaces centered on user experience as a
navigation tool. Further the interface should not be constrained by the cognitive
model of the developer and should be able to adapt to the user’s own perception
of how the content should be searched. We present such a system for Indian
Classical Music. Here each musical piece is qualified by seven characteristics.
The user can choose any one of them, at a time, to reduce the candidate
collection. Musicons are used to help select the characteristic. Eliminating the
characteristics one by one, the user arrives at the piece of his/her choice.

Keywords: - Exploratory interface, experiential interface, Indian classical music,
musicon, musical smell.

1 Introduction

Handling large-scale repositories where there are more than a million entries is often a
subject of great concern. Presenting a proper user interface for traversing such a
humongous database takes a lot of thought. One is especially concerned with the
aspect that more often than not, such databases give some optimum traversal routes
while ignoring the special requirements for different categories of users. We propose
that large collections, which mandate an interactive user interface, be explored via
experiencing. We call it an experiential exploratory interface. Our model example is a
repository of Indian classical music. In terms of complexity, Indian classical music is
one of the most challenging subjects. If one uses tests like number of musical notes
approved, basic musical scales accepted, musical instruments in circulation, rhythms
used, methods governing the production of voice, current musical symbolism and a
host of others, one will indeed see that the musical map overruns the political map of
India. But then how do we qualitatively present a musical repository, which will cater
to all tastes and needs. We need a suitable exploratory interface based on user
experience which would map out all the major tenets of Indian classical music for the
connoisseur as also help a lay man explore the repository. We also introduce an idea
of musical “smell” which will lead the user to his destination point irrespective of the
point from which he has started.

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 359-370, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Information Handling in Large Databases

When we have large amounts of information, the organization of this information is
always a key problem for information architects. Most often we tend
to build structures that are staticc and force the user to learn 'my
cognitive  structure' instead of a program or an interface that adapts
to the users cognitive structure. This is “pro-builder’ approach and makes the user
traverse the specific path that the creator has created for him. A more interactive
interface which is ‘pro-user’ will give the choice of traversing a path to the user and
still lead him to where he initially wanted to go. Now, the question is how and what
we should do in order to build an information retrieval engine that can adapt to the
users cognitive structure.

We propose a conceptual framework for facilitating the dynamic generation of the
navigational model by the user at run time. We visualize the concept space to consist
of a collection of attributes, which act as handles and help in uniquely identifying the
piece. The other challenge is to generate this interface dynamically so that the user
can decide on his/her route of traversal.

3 A “Sweet” Analogy

Before moving on to a description of how one may form an experiential framework
for the exploration of Indian classical music, it will help if we give an example of
what one wants to achieve from such a framework and how exactly it might work.
Imagine yourself going to an Indian sweet shop. It is more than likely that you will be
overwhelmed by the array of choices that are laid in front of you. You may be a
connoisseur of Indian sweets in which case, you may ask for a special variety of a
specific sweet made using a specific ingredient and in a specific quantity. But what if
you are not? It is a well known strategy of the seller in such cases to let you taste a
piece of his products. As you taste a piece, you make up your mind whether you
would like to buy it. But how do you taste, say 50 varieties of sweets, laid in front of
you? To ease your ‘navigation’ the seller may prompt you about whether you are
allergic to honey (thus removing all sweets made using honey) or if you like ‘dry’
sweets (thus eliminating the ‘wet’ sweets like rasagolla) or ‘dry’ versions of ‘wet’
sweets, and then just to help you make up your opinion will allow you to taste a piece
of both types. Once he has helped you to narrow your search, he may further ask
questions like if you would prefer the ones with slight apricot spicing on top to further
narrow down your choices and let you taste some of it again. The interface we are
proposing is inspired from this and reflects this scenario with the user’s experience at
each level of traversal helping in framing the ultimate route to his/her destination
point. The dynamic generation of the questions is what forms the exploratory part of
the interface.
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4 Indian Classical Music

Indian classical music is graced by an astounding variety and richness of content.
There are so many aspects to it that one will run out of space if one were to enumerate
them all. For our purposes we have categorized each Indian classical piece to possess
7 basic characteristics [1]. These 7 characteristics are:

Type (vocal, instrumental or jugalbandi(mixture) of both),

Raga of the piece,

Tala of the piece,

Gharana of the piece

Name of the artist (who has performed it)

Region (hailing from which Indian region),

Version (whether a cover version or a live version etc).

The seven characteristics we have identified are described below with the further
breakdown of each characteristic with a relational schema and description for each. It
should be noted that the individual breakdown of each attribute is not an exclusive
list. We have only pointed out the most well known as well the more interesting sub
divisions for a characteristic.

Type: - A musical piece may be a pure vocal piece, to the accompaniment of suitable
instruments or without any instruments, can be a pure instrumental piece (consisting
of several or a single instrument) or even be a jugalbandi (a mixture of part vocal
with part instrumental).
Its relational schema looks as follows.

Type {Vocal, Instrumental, Jugalbandi}

Vocal {Art Music, Light Music}

Art Music {Dhrupad, Khayal, Ras, Chaturanga, Tarana, Ashtapadi, Sargam Geet}

Light Music {Thumri, Dadra, Kajri, Chaiti, Sawan, Qawwali, Ghazal, Bhajan,

Tappa}

Instrumental {String, Solid Bodied, Wind, Membrane Covered}

String {Dilruba, Sarangi, Israj, Violin}

Solid Bodied {Piano, Keyboard}

Wind {Flute, Shehnai, Clarinet, Harmonium}

Membrane Covered {Tabla, Pakhwaz, Dholak}

Raga — The raga is unique to Indian classical music and has no equivalent in western
classical music. Roughly it may be described as a melodic framework which governs
the way a piece is performed.
Its relational schema looks as follows.
Raga {Thaat, Aroha, Avaroha, Jati, Special Notes, Register, Pakad, Chalan,
Position, Time of Singing}
Thaat {Bilawal, Kalyan, Khamaj, Bhairav, Poorvi, Marwa, Kafi, Asawari, Todi,
Bhairavi}
Jati {Sampoorna, Shadava, Oudava, Sampoorna Shadava, Sampoorna Oudava,
Shadava, Oudava, Shadava Sampoorna, Oudava Shadava, Oudava Sampoorna}
Register {Mandra, Madhya, Tara}
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Position {Purvarang, Uttarang}
Time of Singing {Morning, Noon, Evening, Night, Anytime of day, Seasonal}

Tala — The tala refers to the fundamental concept of beat patterns to which a
particular composition is set. Figuratively speaking, the tala assumes greater
importance when it is pure instrumental piece. For vocal renditions, the raga is the
more important constituent. However, every piece must be set to a unique raga and a
unique tala.
Its relational schema looks as follows.

Tala {Madhya, Vilambit, Drut, Dugun, Pat, Theka, Tihai}

Gharana — Every musical piece has a history attached to it, which traces its
beginning, its very conception. Gharanas can thus said to be the founding houses
which gave certain characteristic features to a particular vocal or instrumental
rendition. More generally speaking, gharanas framed the musicological ideology of
the artistic piece.
Its relational schema looks as follows.

Gharana {vocal, instrumental }

Vocal {Khayal Gharanas, Thumri gharanas}

Khayal Gharanas {Gwalior, Agra, Jaipur, Kirana}

Thumri Gharanas {Benaras, Patiala}

Instrumental {Pakhwaj Gharanas, Tabla Gharanas, Sitar Gharanas}

Pakhwaj Gharanas {Kudau Singh, Nana Panse, Nathadwara}

Tabla Gharanas {Delhi, Ajrada, Lucknow, Farrukhabad, Benaras, Punjab}

Sitar Gharanas {Jaipur, Rampur/Mahiyar, Imdad Khan}

Artist — This refers to the artist who has performed the piece. In case there are
multiple artists involved, a single person is identified as the main artist and the piece
is listed under his name. In case of jugalbandis or duets, the piece can be accessed by
either artist.
Its relational schema looks as follows.

Artist {Male, Female, Bands}

Male {by name}

Female {by name}

Band {By Name}

Region — A piece sometimes carries a distinctive feature of a particular region of
India which may influence whether the browser wants to listen to it or not.
Its relational schema looks as follows.
Region{North India, Central India, Western India, Deccan, South India, East India,
North East India}

Version — Any musical piece can have several versions. With the possible elimination
of remixes, one may have different versions of the same song while still being sung
by the same artist. In that scenario, the distinguishing feature may be its version. In
essence, version stamps a time of origination for the musical piece.
Its relational schema looks as follows.

Version {Cover, Original Sound track, Live, Remix}
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5 An Experiential Interface — Musical ‘Smell’ and Musicons

As shown in the sweets analogy, the music repository will be traversed at every point
after the user has experienced/ sampled a small part of the fare that lies in front of
him. To provide him with this interface, we introduce the concepts of a musical
‘smell” which will guide the user in his peripheral search for the audio piece of his
choice. We also utilize the concept of a musicon, which is the sample that he gets to
experience before making his choices.

Again taking help of another analogy, consider you are entering a room, which has
certain doors which are marked according to the 8 musical piece characters we
described earlier. As you go near each door, you hear a small audio piece, which
gives the characteristic flavor of the music hidden behind that door. As and when you
like a piece, you enter that door. By choosing any door, you select a particular value
for that characteristic, as marked on the door (say by choosing the raga door, you
have selected the ragas of bhairavi thaat). Once you enter the room, which lies
behind this door, you get 6 doors, marked by those characteristics, which are still left.
And in this way you go round till you have identified the particular piece you want.
The pieces that are played at every door of entry, which serve as an icon for that
particular characteristic, are called musicons. A musicon is thus a short composition,
which will give the greatest essence of the ‘door’ it represents. Overall, one may
choose to have the most common subset of pieces to satisfy all the different doors. So
a piece may be the best fit as a dadra (a form of art music) example. Similarly it may
be the best fit for a vocal piece played along with a pakhawaz. Selecting the correct
musicons proves to be a major challenge of this approach, since if the most ‘enticing’
piece is not provided, the user may very well not elect entering that ‘door’. But for
different users, the requirements may be different. Hence what may entice a
connoisseur may prove to be too obtuse for a first time listener. To arrange for the
best possible musicon, one has thus to get some information about the particular user.
His basic requirements may be encapsulated in some simple information that he may
be asked to provide. Based on the information that he provides, a piece is dynamically
chosen as the musicon for a particular ‘door’, provided that he chooses to ‘test’ that
door.

The 2™ concept of musical ‘smell’ is a modification of the ideas propagated in the
focus with context [2] presentation as can be seen in practice in [3]. Information scent
was initially proposed in the information foraging theory and has been developed
after over 20 years of research work at Xerox parc on how people perceive, navigate
and assimilate information. Information scent is provided by the proximal cues
perceived by the user that indicates the value, cost of access, and location of distal
content. In the context of foraging for information on the World Wide Web, for
example, information scent is often provided by the snippets of text and graphics that
surround links to other pages [4]. In our case, the aural scent will be hidden in the
pieces that are selected as musicons. Basically they will be subtle pointers to the sister
‘doors’ that one may traverse from that particular ‘door’. So if one has chosen to
listen to a Bageshri raga rendition, the piece selected would also bear characteristics
of the Kafi thaat, which contains the Bageshri raga, thus providing a musical ‘smell’
about say, the Bahar raga, which is another raga of the Kafi thaat. In this way, there
will be a network of interconnections between sister nodes in the framework and the
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user will be provided a choice to make a horizontal detour instead of always going in
a relative top-down traversal.

6 Dynamic Generation of the Interface

One of the major challenges is to dynamically generate the links, which would
facilitate the quickest traversal for the user while still maintaining the exploratory
nature of the interface. For example a sample traversal of the database is given be-
low in fig. 1. At each level of the traversal, the user is faced with certain choices, and

Thisis Chosen
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v
Ragas(for Dhrupad)
[oes | [ Gous | [pomn |-~ - -
[ouse | [ o0 | [tou
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¥
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Agra Gharana is selected
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4 mh @ 128kbps

Fig. 1. Traversal path where a user selects a piece of Dhurpad music sung in Kafi raga set to
choutal tala, performed by a male singer to the accompaniment of the pakhwaz. The user starts

off from the node vocal and ends in the piece.
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Fig. 2. The traversal path where the user selects the same piece as earlier but starting off from
raga node this time. Selecting the raga involves either naming it outright or giving details of
raga class so that the set is narrowed down.
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based on the choice he makes; he is guided to the piece of his liking. All other choices
at the same level are suppressed once a user has made a choice. But this suppression
is not permanent since the user always has the option of retracing his track and
coming back the way he went and then go on to a sister traversal route. In fig. 2 we
can see an alternative part that a different user has used to arrive at the same piece. So
the path is only a function of the choices that the user makes, based on the musicons
he gets to experience.

The point to be appreciated in this is that one may browse through a very large
database in a few steps and also be able to dynamically generate/permit multiple
traversal mechanisms. Following is a sequence diagram in UML for the dynamic
generation of the traversal routes.

User Input System Interface SOL server
|

|
| 1: Login |

|
|
|
2: Askfor information |
|
|

3: Provide Informatior

4: Provide optimized informatign

5: Malke a combined
S0L query

i

6. Generate an output__—

4-""_"_}—_‘-_

é,"/

Fig. 3. Dynamic generation of the traversal route

Our traversal scheme is completely oriented according to the user’s wish. However
in case the user doesn’t specify a choice, we propose a default-optimized traversal
which will lead the user to his piece of liking in swiftest possible time. For this default
traversal, we need to keep in mind an optimization scheme, which will make the
length of traversal minimum while still retaining our original motive of giving the
user the greatest possible number of choices. For optimization purposes, we have
ranked each of the 7 characteristics and then their own sub divisions according to the
number and size of partitions that they divide the superset into. They are in order of
decreasing factoring potential of the superset.
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Artist Name - 1
Type - 2

Raga -3

Thaat - 3.1

Time of singing - 3.2
Jati - 3.3

Version - 4

Tala-5

Gharana-6

Region — 7

Fig. 4. Gives ranking scheme for each characteristic in decreasing order of their potential to
divide the subset

Here Thaat, Time of singing, and Jati are used to subdivide the raga. They are
separately mentioned because they have different segmentation potentials as opposed
to say artist which can be divided into male, female and band — each with equal
probability.

The algorithm that is used to generate the dynamic traversal route can be
formulated as below.

By sub-characteristics we mean the divisions of a characteristic so the sub-
characteristics of “type” are “vocal”, “instrumental” & “jugalbandi” and so on.

So it is finally simplified to the level of a series of selections. The user gets the
opportunity to choose the relation on which he wants to perform the selection. The
whole query is a succession of selection operations.

7 Some Critical Challenges Overcome

Any experiential interface has the advantage of favoring the user’s cognitive space
while making a traversal. More often than not, the repositories are places from which
someone needs to buy something. An experiential network improves the chances of a
product being satisfactorily selected multiple times as against a normal static network.

The dynamic generation of the path makes it ideal for a swift traversal. Since the
path is generated keeping in mind the specific user requirements, one gets a shortest
mean path between the starting node and the destination node, while still exploring
the major hop points. In essence these are not discrete jumps to minimize the time of
traversal only, they form a continuum in the musicological exploration space so as it
is a smooth curve from the initial point to the destination. This is especially important
since one is also trying to promote Indian classical music as an entity and wouldn’t
want to miss out on an admirer, for lack of presenting to him, that aspect of Indian
classical music. However, exceptions can be made for this in case the user specifically
wants to directly go to a certain piece without any intermediate hops. In such cases,
the user will usually be a connoisseur since he will know the exact characteristics of
the piece that he wants and has made a selection prior to coming to the repository.
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Fig. 5. Algorithm for dynamic generation of traversal path after processing user input

The whole theme of a user-modeled path gives the user full liberty in satisfying her
particular requirement. He may thus decide to explore the various facets of Indian
classical music by wandering through the different ‘doors’ or he may choose to
eliminate the ‘doors’ one by one and thus arrive at a unique piece. He may also
backtrack on the ‘doors’ and thus make detours or circumvent some particular aspect.
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The choice of musicon assumes great importance given the experiential nature of
the network. The musicon should be musically representative of the collection it
stands for. While it may not be difficult to create musicons to differentiate a collection
of percussion musical pieces from string instrument pieces, having a musicon to
separate evening music from the afternoon may be more difficult. Also the ability to
design musicons to represent the size of the collection, popularity, cost and other such
properties will be very interesting.

8 Current Status

Presently we have solved the intricacies of the conceptual problem and are on way to
implementing the back-end and the front-end user interface. The other major thing
that is underway is choosing and collecting the most appropriate musicons for each
category. A good list of musicons will bring a purely aural interface (devoid of any
textual part) for the user into the realms of possibility.

9 Conclusions

Experiential framework for browsing is a very powerful model for exploring huge
databases. By empowering the user at each level and generating the traversal route
according to his choices, this model is ideally suited for most business level
interactions. The dynamic generation of the route is another key feature of this model
and it is expected to provide the thrust in time optimization of the traversal route.
Appropriate design of musicons will help in making the choice and the interface could
be driven mostly through an audio interface.

The technology that we have discussed for music in particular, can be extended to
books, compact disks and other media which provide an experiential possibility. It
may further be used for online stores, digital library, human genealogy determination
etc.
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Appendix: Musicons

The musicons are the most vital aspects of this interface since they determine the
user’s reaction and his next immediate step. Since it carries this cognitive burden of
shaping the user’s preferences, we have divided them into 3 categories: -

- For the lay user

- For users with moderate acquaintance of Indian classical music

- For a connoisseur of Indian classical music

The types of musicons will differ for each of the three categories with every piece
having 3 (or more) musicons. The selection criterion for the musicons is also
stringently observed, for each category of musicon acts as the virtual signature for the
class of music that lies beneath it. Each musicon for each level is selected after a
panel of users who classify their acquaintance with Indian classical music along those
3 different levels gives their preference. But these musicons for different categories
may not be different for there may be pieces where the same musicon may serve for
all three categories.

The musicons themselves will be of approximately 20-30 seconds duration. They
may not be the leading part of the musical piece but will mostly be the part which
catches the listener’s fancy like the part which is repeated, the mukhra, a
characteristic beat pattern etc. It may even have nothing to do with the piece, for
example an inspired musicon for all morning ragas may be a special recording of the
typical morning sounds of songbirds.

The pieces are accessible only after the user makes a definitive choice as to which
piece he wants to listen to. Considering the sizes of the files, there will not be any
streaming. Instead the files will be downloaded to the user’s hard disk before playing.
Till the user makes a choice i.e. s/he decides to download a musical piece, s/he will
only hear the musicons. These musicons will thus represent the music pieces even at
the lowest levels of depiction.

The traversal of the database will start from the same level i.e. after the user
authenticates himself, he will find himself with the same set of 7 primary
characteristics as discussed here. But once he gets beyond this primary level, he may
twist the organizational structure to get to any level from any level depending upon
the choice that he has made. The musicons for the topmost level will thus be a random
selection since these are the 7 basic criteria on which all the pieces are classified and
to play the same set of musicons for this topmost level will render the exercise
meaningless. Hence a random selection of musicons according to the user cognitive
level — lay user, moderate experience, connoisseur; is to be done.



Author Index

Anagnostopoulou, Christina, 211 Lee, Jae-Heon, 280

Arcos, Josep Lluis, 347 Leistikow, Randal J., 41

Arifi, Vlora, 193 Loépez de Méantaras, Ramon, 347
Lu, Guojun, 61

Baumann, Stephan, 119 Ludovico, Luca A., 330

Bensa, Julien, 232
Malcangi, Mario, 71

Cardoso, Amilcar, 21 Mendes, Teresa, 21
Chew, Elaine, 1 Meredith, David, 173
Chua, Bee Yong, 61 Miiller, Meinard, 193
Clausen, Michael, 193
Conklin, Darrell, 295 Paiva, Rui Pedro, 21
Pappu, Nagaraju, 359
Dubois, Daniele, 232 Park, Jaehyun, 280
Pearce, Marcus, 295
Essl, Georg, 220 Pinto, Alberto, 260

Prabhakar, T.V., 359
Frauenberger, Christopher, 130

Ritsch, Winfried, 130

Garay Acevedo, Andres, 96 Roy, Debopam, 359

Garcia Escudero, Juan, 107

Gerhard, David, 158 Tarabella, Leonello, 139

Grachten, Maarten, 347 Tekin, Mevlut Evren, 211

Graugaard, Lars, 149 Thornburg, Harvey D., 41

Guillemain, Philippe, 246 Tomita, Yo, 211

Haus, Goffredo, 260, 330 Vembu, Shankar, 119

Helland, Robin T., 246

Hepting, Daryl H., 158 Wiggins, Geraint, 295
Won, Jae-Yong, 280

Jensen, Kristoffer, 83 Wu, Xiaodan, 1

Kim, Yoo-Sung, 280 Ystad, Selvi, 232, 246

Kronland-Martinet, Richard, 232, 246

Ku, Kyongl, 280 Zheng, Yi, 313

Kurth, Frank, 193 Zhong, Ningyan, 313



	Frontmatter
	Pitch, Melody Detection
	Separating Voices in Polyphonic Music: A Contig Mapping Approach
	An Auditory Model Based Approach for Melody Detection in Polyphonic Musical Recordings
	A New Probabilistic Spectral Pitch Estimator: Exact and MCMC-approximate Strategies

	Rhythm, Tempo, Beat
	Determination of Perceptual Tempo of Music
	Source Separation and Beat Tracking: A System Approach to the Development of a Robust Audio-to-Score System
	A Causal Rhythm Grouping

	Music Generation, Knowledge
	Fugue Composition with Counterpoint Melody Generation Using Genetic Algorithms
	Harmonizations of Time with Non Periodic Ordered Structures in Discrete Geometry and Astronomy
	A Self-Organizing Map Based Knowledge Discovery for Music Recommendation Systems

	Music Performance, Rendering, Interface
	Internet Archive of Electronic Music IAEM -- internet Audio Rendering System iARS
	Handel, a {\itshape Free-Hands} Gesture Recognition System
	Open and Closed Form in Interactive Music
	Collaborative Computer-Aided Parameter Exploration for Music and Animation

	Music Scores, Synchronization
	Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal Music
	Score-PCM Music Synchronization Based on Extracted Score Parameters
	Towards an Intelligent Score Following System: Handling of Mistakes and Jumps Encountered During Piano Practicing

	Synthesis, Timbre, Musical Playing
	Aspects of the Topology of Interactions on Loop Dynamics in One and Two Dimensions
	Perceptive and Cognitive Evaluation of a Piano Synthesis Model
	The Clarinet Timbre as an Attribute of Expressiveness

	Music Representation, Retrieval
	A Graph Theoretic Approach to Melodic Similarity
	A Content-Based Music Retrieval System Using Representative Melody Index from Music Databases
	Methods for Combining Statistical Models of Music
	Constraint-Based Melody Representation

	Music Analysis
	Music Segmentation: An XML-oriented Approach
	Evolutionary Optimization of Music Performance Annotation
	Parichaykrama -- An Exploratory Interface of Indian Classical Music Using Experiential Framework

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




